Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The role of adsorption and catalysis in semiconductors gas sensors. Pt. 1 Sensing mechanism and preparation of resistant sensors
Języki publikacji
Abstrakty
The development of semiconductor gas sensors for the detection of combustion and toxic gases has been in progress for several years. Ceramics gas sensors based on SnO2, TiO2, ZnO have been widely accepted as an important tool for detecting or monitoring gases and vapours like H2, CO, CH4, H2S, C2H5OH. The sensors are manufactured by means of different technologies. The most popular ones are resistant sensors based on SnO2, developed in Japan and currently produced on a large scale. Among these, TGS sensors (Tagushi Gas Sensors) from Japanese company Figaro are the most popular ones .The principle of the operation of this type of sensors consist in a comparison of electrical resistance of semiconducting oxide in air, and in the presence of the detected gas. The change in resistance is a function of the concentration of the gas. The gas sensing mechanism for a reducing gas such as carbon monoxide involves the reaction of CO with ionosorbed oxygen on the sensor surface leading to a decrease in resistance. (...) Because problem of catalysis in detection gases is very large, the review is divided into four parts: I. Sensing mechanism and preparation, II. The correlation between adsorption and detection, III. The correlation between catalytic activity and detection. In the last part of the paper (part IV) would like to show the role of adsorption and catalysis in other semiconductor gas sensors such as Pd-MISFET, SAW or Zirconia sensors. In this part of the paper, the mechanisms of detection and the influence of oxide-metal semiconductor preparation on properties of ceramics gas sensors is presented. The results of different works show that the sensing characteristic of semiconductor gas sensor can be improved by controlling fundamental factors which affect its receptor and transducer functions. The transducer function is related to the microstructure of the sintering specimen. This microstructure is characterised by the grain size and the depth of surface space-charge layer. On the other hand, the receptor function is modified by the introduction of foreign receptors on the surface of sensors. In the particular cases of Pt, Pb and Ag are promotors. These problems are presented in aspects of phenomenon of adsorption and catalysis and the role they play in detection of gases.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
249--270
Opis fizyczny
wykr., bibliogr. 56 poz.
Twórcy
autor
- Instytut Chemii Ogólnej i Ekologicznej Politechniki Łódzkiej, ul, Żwirki 36, 90-924 Łódź
- Instytut Chemii Ogólnej i Ekologicznej Politechniki Łódzkiej, ul, Żwirki 36, 90-924 Łódź
Bibliografia
- [1] I. Kocemba, T. Paryjczak, Wiad. Chem, 1992, 46, 285.
- [2] R. Chabicovsky, Elektronika 1992, 1-2, 20.
- [3] R. S. Jachowicz, Elektronizacja, 1991, 1, 4.
- [4] S. Matsuura, Sen. Act., 1993, B13-14, 7.
- [5] P. McGeehin, P. T. Moseley, D. E. Williams, Sen. Rev., 1994, 14, 13.
- [6] L. Hozer, Półprzewodnikowe materiały ceramiczne z aktywnymi granicami ziarn, PWN, Warszawa 1990.
- [7] Ch. Lim, S. Oh, Sen. Act., 1996, B30, 222.
- [8] J. Watson, Sen. Rev., 1994, 14, 20.
- [9] G. S. Devi, S. Manorama, V. J. Rao, Sen. Act., 1995, B28, 31.
- [10] L. Angelis, R. Riva, ibid., 1995, B28, 25.
- [11] T. Brousse, D. M. Schleich, ibid., 1996, B31, 77.
- [12] G. Ghiotti, A. Chiorino, W. Xiong Pan, L. Marchese, ibid., 1992, B7, 691.
- [13] V. Lantto, P. Romppainen, J. Electroch. Soc, 1988, 135 (10), 2550.
- [14] N. Ichinose, Am. Ceram. Soc. Bull., 1985, 64, 1581.
- [15] J. Gerblinger, H. Meixner, J. AppL Phys., 1990, 67, 7453.
- [16] J. Gerblinger, H. Meixner, Silicates Industriels, 1994, 1-2, 31.
- [17] U. Lampe, J. Gerblinger, H. Meixner, Sen. Act., 1995, B24-25, 657.
- [18] W. Gopel, J. Hesse, H. Baltes, Sensors Update, Vol. 2, Wiley-Vch, Weinheim 1996.
- [19] T. Okuhara, N. Mizuno, M. Misono, Adv. in Catal., 1996, 41, 113.
- [20] Y. Konishi, K Sakata, M. Misono, Y. Yoneda, J. Catal, 1982, 77, 169.
- [21] W. Monch, Semiconductor Surface and lnterfaces, Springer-Verlag, Berlin 1993.
- [22] J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, J. Chem. Soc. Faraday Trans., 1987, 83, 1323.
- [23] W. Gopel, K. D. Schierbaum, Sen. Act., 1995, B26-27, 1.
- [24] Th. Wolkenstein, Electrons and Crystals, Mir, Moscow 1985.
- [25] R. Lalauze, C. Pijolat, S. Vincent, L. Bruno, Sen. Act., 1992, B8, 237.
- [26] T. Nenov, S. Yordanov, ibid., 1992, B8, 117.
- [27] F. J. Gutierrez, L. Ares, J. I. Robla, M. C. Horrillo, I. Sayago, J. A. Agapito, ibid., 1992, B8, 231.
- [28] S. R. Morrison, ibid., 1987, 12, 425.
- [29] A. Bielański, J. Haber, Cata. Rev.-Sci. Eng., 1979, 19 (1), 1.
- [30] R. K. Srivastava, P. Lal, R. Dwivedi, S. K. Srivastava, Sen. Act, 1994, B21, 213.
- [31] S. J. Gentry, T. A. Jones, ibid., 1986, 10, 141.
- [32] V. Lantto, P. Romppainen, S. Leppavuori, ibid., 1988, 14, 149.
- [33] M. C. Carotta, C. Dallara, G. Martinelli, L. Passari, A. Camanzi, ibid., 1991, B3, 191.
- [34] S. R. Morrison, Surf. Sci., 1971, 27, 586.
- [35] P. Romppainen, V. Lantto, J. Appl. Phys., 1988, 63 (10), 5159.
- [36] V. Lantto, P. Romppainen, Surf. Sei, 1987, 192, 243.
- [37] I. Kocemba, Electron Technology, 1996, 29, 372.
- [38] G. Martinelli, M. C. Carotta, Sen. Act, 1995, B23, 157.
- [39] N. Barsan, ibid., 1994, B17, 241.
- [40] G. Pfaff, ibid., 1994, B20, 43.
- [41] W. Fliegel, G. Behr, J. Werner, G. Krabbes, ibid., 1994, B18-19, 474.
- [42] B. Grzybowska-Świerkosz, Elementy katalizy heterogenicznej, PWN, Warszawa 1993.
- [43] T. Oyabu, Y. Ohta, T. Kurobe, Sen. Act., 1986, 9, 301.
- [44] R. Botter, T. Aste, B. Beruto, ibid., 1994, B22, 27.
- [45] S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, ibid, 1992, B9, 71.
- [46] Z. G. Szabo, D. Kallo, Contact Catalysis, Akademiai Kiado, Budapest 1976.
- [47] K. D. Schierbaum, U. Weimar, W. Gopel, Sen. Act., 1992, B7, 709.
- [48] M. S. Dutraive, R. Lalauze, C. Pijolat, ibid., 1995, B26-27, 38.
- [49] N. Yamazoe, ibid., 1991, B5, 7.
- [50] Ch. Xu, J. Tamaki, N. Miura, N. Yamazoe, ibid, 1991, B3, 147.
- [51] H. Ogawa, M. Nishikawa, A. Abe, J. Appl. Phys., 1982, 53 (6), 4448.
- [52] J. F. Goodman, S. J. Gregg, J. Chem. Soc., 1960, 82, 1162.
- [53] L. M. Sharygin, V. F. Gonchar, V. I. Boribin, Izv. Akad. Nauk. SSSR, Neorg. Mater, 1981, 17, 1804.
- [54] G. E. S. Brito, S. H. Pulcinelli, C. V. Santilli, N. Barelli, J. Mater. Sei. Lett., 1993, 12, 992-994.
- [55] Ch. Xu, J. Tamaki, N. Miura, N. Yamazoe, ibid., 1989, 8.
- [56] S. Yasunaga, S. Sunahara, K. Ihokura, Sen. Act., 1986, 9, 133.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0005-0024