PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Symetria molekuł a stereochemia

Autorzy
Identyfikatory
Warianty tytułu
EN
Molecular symmetry and stereochemistry
Języki publikacji
PL
Abstrakty
EN
Stereochemistry, often regarded merely as a descriptive discipline, is an inexhaustible source of mathematical problems. Group theory, topology, graph theory, etc. Are widely applied to the description of molecular architecture and conformational dynamics, to isomer counting and labelling, interpretation of spectra and more. Both mathematics and stereochemistry benefit from their marriage: new theorems are proved and new molecules synthesised. This review is concentred with molecular symmetry, an idea which, appropriately generalised, is central to stereochemistry. Depending on what we imagine a molecule to be, whether a rigid body, a set of nuclei, or a graph, the nature of symmetry operations changes. Our attempt is to demonstrate how various symmetry models work, explore their capabilities, and show how they are interrelated by virtue of their common group theoretical framework. Points groups, derived in the opening section, are by far the most popular symmetry description albeit applicable only to instantaneous configurations of molecules. Point groups, providing little information on the actual structure of a molecule, canbe extended into so called framework groups which detail the distribution of atoms over sites of different local symmetry. From the structure of minimal framework groups the frequency of various point symmetries amongst molecules can be inferred. This is illustrated with a number of examples. The following section introduces the idea of permutational symmetry and its application to non-rigid molecules. The permutation-inversion (PI) group of Longuet-Higgins is defined and exemplified, its semidirect product structure being discussed in some depth. The PI group is then used for the description of selected dynamic processes, such as the rearrangements of bullvalene or 'racemization' of Mislow's ester. Finally, the classification of nuclei used in NMR spectroscopy is expressed in terms of equivalence classes within the PI group. The final section deals with topological properties of molecules. The principles of graph theoretical approach to molecular symmetry are outlined. Topological stereoisomerism is then defined, and the synthetic philosophy of topological stereochemistry and its achievements are briefly reviewed. We end with a discussion of symmetry properties of topologically non-trivial species, paying partucular attention to realizability of automorphisms and chirality of graphs.
Rocznik
Strony
17--64
Opis fizyczny
schem., wykr., bibliogr. 70 poz.
Twórcy
autor
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. F.Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. F.Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] H. Weyl, Symetria, Prószyński i S-ka, Warszawa 1997.
  • [2] a) D. M. Walba, Stereochemical topology, [w:] R. B. King, Chemical Applications of Topology and Graph Theory, Elsevier, Amsterdam 1983; b) D. M. W alb a, Tetrahedron 1985, 41, 3161.
  • [3] Z. Hippe, Zastosowanie metod sztucznej inteligencji w chemii, PWN, Warszawa, 1993.
  • [4] F. A. Cotton, Teoria grup. Zastosowania w chemii, PWN, Warszawa 1973.
  • [5] J. Mozrzymas, Zastosowania teorii grup w fizyce, PWN, Warszawa-Wrocław 1977.
  • [6] H. S. M. Coxeter, Regular Polytopes, Methuen & Co. Ltd., London 1948.
  • [7] A. J. MacDermott [w:] 5th International Conference on Circular Dichroism. Lectures and Posters, Colorado State Unwersity, Colorado, 1993.
  • [8] J. F. C. Hessel, Krystallometrie oder Krystallonomie und Krystallographie (Ostwald’s Klas- siker der exakten Wissenschaften 88, 89), Leipzig 1897 (przedruk). Cytowane za: H. S. M. Coxeter, W. O. J. Moser, Generators and Relations for Discrete Groups, Springer Verlag, Berlin 1972.
  • [9] H. Bethe, Ann. Physik, 1929, 3, 133.
  • [10] D. Voet, J. G. Voet, Biochemistry, John Wilcy&Sons, 1990.
  • [11] J. A. Popie, J. Am. Chem. Soc., 1980, 102, 4615.
  • [12] R. L. Flurry Jr., ibid., 1981, 103, 2901.
  • [13] I. Hargittai, M. Hargittai, Symmetry through the Eyes of a Chemist, 2^ cd., Plenum Press, New York-London 1995.
  • [14] H- Dodziuk, Modern Conformational Analysis, VCH Publishers, Inc., New York 1995.
  • [15] M. Farina, C. Morandi, Tetrahedron, 1974, 89, 1819.
  • [16] H. Noth, D. Se diak, Chem. Ber., 1983, 116, 1479.
  • [17] K. Misiów, M. A. W. Glass, H. B. Hopps,E. Simon, G. H. Wahl, Jr, J. Am. Chem. Soc., 1964, 97, 1710.
  • [18] C. Piguet, G. Bernardinelli, G. Hopfgatner, Chem. Rev., 1997, 97, 2005.
  • [19] H. Binder, W. Diamantikos, K. Dermentzis, H.-D. Hausen. Z. Naturforsch., Teil B, 1982, 37, 1548.
  • [20] K. P. Hall, B. R. C. Theobald, D. I. Gilmour, D. M. P. Mingos, A. J. Welch, J. Chem. Soc., Chem. Comm., 1982, 528.
  • [21] V. G. Kuznetsov, P. A. Koz’min, Zh. Strukt. Khim., 1963, 4, 330.
  • [22] S. K. Kang, H. Tang, T. A. Albright, J. Am. Chem. Soc., 1993, 115, 1971.
  • [23] R. W. Rudolph, J. L. Pflug, C. M. Bock, M. Hodgson, Inorg, Chem., 1970, 9, 2274.
  • [24] S. S. Isied, G. Kuo, K. N. Raymond, J. Am. Chem. Soc., 1976, 98, 1763.
  • [25] H. E Simmons III, J. E. Maggio, Tetrahedron Lett, 1981, 22, 287; L. A. Paąuette, M. Vazeux, Tetrahedron Lett., 1981, 22, 291.
  • [26] M. Veith, Chem. Rev., 1990, 10, 3.
  • [27] G. E. McCasland, S. Proskow, J. Am. Chem. Soc., 1955, 77, 4688; 1956, 78, 5646.
  • [28] G. Maier, S. Pfriem, V. Schafer, R. Matusch, Angew. Chem. Int. Ed. Engl. 1978,17, 520.
  • [29] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4lh ed., Wiley&Sons, 1986, 222.
  • [30] M.-M. Rohmer, M. Benard, C. Bo, J.-M. Poblet, J. Am. Chem. Soc., 1995, 117, 508.
  • [31] I. Alkarta, J. Elguer, I. Rozas, A. T. Balaban, THEOCHEM, 1991, 74, 47.
  • [32] H. Oberhammer, J. Chem. Phys., 1978, 69, 468.
  • [33] D. Kuch, A. Schuster, Angew. Chem., Int. Ed. Engl., 1988, 27, 1192.
  • [34] D. Schattschneider, W. Walker, Kalejdocykle M. C. Eschera, Benedikt Taschen, 1992.
  • [35] L. Salem, New J. Chem., 1995, 19, 5.
  • [36] H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc., 1992, 114, 7843.
  • [37] A. B. Buda, T. Auf der Heyde, K. Misiów, Angew. Chem., Int. Ed. Engl., 1992, 31, 989.
  • [38] H. C. Longuet-Higgins, Mol. Phys., 1963, 6, 445.
  • [39] S. L. Altmann, Proc. R. Soc. London, Ser. A 1967, 298, 184.
  • [40] S. L. Altmann, Reprezentacje indukowane w kryształach i molekułach. Grupy przestrzenne, punktowe i molekuł niesztywnych, Stowarzyszenie: „Symetria i Własności Strukturalne”, Po¬znań 1994.
  • [41] A. Bauder, R. Meyer, H. H. Gunthard, Mol. Phys., 1974, 28, 1305.
  • [42] G. S. Ezra, Lecture Notes Chem., 1982, 28, 1-202.
  • [43] J. Serre, Ad. Quantum Chem., 1974, 8, 1-36.
  • [44] P. R. Bunker, Molecular Symmetry and Spectroscopy, Academic Press, New York 1979.
  • [45] G. S. Ezra, The semi-direct product structure of nonrigid molecule groups, [w:] Symmetries and Properties of Non-Rigid Molecules: A Comprehensiue Survey, Elsevier, Amsterdam 1983.
  • [46] R. L. Flurry Jr., J. Phys. Chem., 1976, 80, 777.
  • [47] H. B. Burgi, W. D. Hounschell, R. B. Nechber Jr., K. Misiów, J. Am. Chem. Soc., 1983, 105, 1427.
  • [48] J. Dugundji, Qualitative stereochemistry, [w:] R. B. King (red.), Chemical Applications of Topology and Graph Theory, Elsevier, Amsterdam 1983.
  • [49] G. Schroeder, Angew. Chem., Int. Ed. Engl., 1963, 2, 481.
  • [50] "I call any geometrical figurę or group of points ‘chiral’, and say it has chirality, if its image in a piane mirror, ideally realized, cannot be brought into coincidence with itself.” — Lord Kelvin, Baltimore Lectures, C. J. Clay and Sons, London 1904.
  • [51] K. Misiów, R. Bolstad, J. Am. Chem. Soc., 1955, 77, 6712.
  • [52] J. K. O’Loane, Chem. Rev., 1980, 80, 41.
  • [53] E. L. Muetterties, Inorg. Chem., 1967, 6, 635.
  • [54] J. Reisse, R. O ttinger, P. Bickart, K. Mislow, J. Am. Chem. Soc., 1978, 100, 911.
  • [55] K. Misiów, Bull. Soc. Chim. Belg., 1977, 86, 595.
  • [56] J. Liu, J. Chem. Soc., Faraday Trans., 1997, 93, 5.
  • [57] D. B. Amabilino, J. F. Stoddart, Chem. Rev., 1995, 95, 2725.
  • [58] H. L. Frish, E. Wasserman, J. Am. Chem. Soc., 1961, 83, 3789.
  • [59] E. Wasserman, ibid., 1960, 82, 4433. Związek ten nie został wówczas wyizolowany.
  • [60] G. Schill, C. Zurcher, Chem. Ber., 1977, 110, 2047.
  • [61] C. Mao, W. Sun, N. C. Se eman, Nature (London), 1997, 386, 137.
  • [62] J.-F. Nierengarten, J.-P. Sauvage, J. Am. Chem. Soc., 1994, 116, 375.
  • [63] D. M. Walba, R. M. Richards, R. C. Haltiwanger, ibid., 1982, 104, 3219.
  • [64] C. O. Dietrich-Buchecker, J.-P. Sauvage, Chem. Rev., 1987, 87, 795.
  • [65] C. O. Dietrich-Buchecker, J. Guilhem, C. Pascard, J.-P. Sauvage, Angew. Chem., Int. Ed. Engl., 1990, 29, 1154.
  • [66] J. F. Nierengarten, J.-P. Sauvage, J. Am. Chem. Soc., 1994, 116, 375.
  • [67] S. M. Du, B. D. Stollar, N. C. Seeman, ibid., 1995, 117, 1194.
  • [68] C. Liang, K. Mislow, ibid., 1994, 116, 3588; 1995, 117, 4201.
  • [69] G. Schill, G. Doejer, E. Longemann, W. Vetter, Chem. Ber., 1980, 113, 3697.
  • [70] E. Flapan, New. J. Chem., 1993, 17, 645; THEOCHEM, 1995, 336, 157.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0005-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.