PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane problemy projektowania substancji biologicznie aktywnych

Autorzy
Identyfikatory
Warianty tytułu
EN
Some problems of drug design
Języki publikacji
PL
Abstrakty
EN
Although most of the drugs have been discovered serendipitously the rational design of the molecules has been attempted from years. However, only the recent years brought a variety of new techniques providing unquestionably efficient procedures. In particular, the methodology of 2D and 3D quantitative structure activity relationships (QSAR) and combinatorial chemistry should be mentioned. In this review the basic methodology of the classical Hansch QSAR aproach has been briefly discussed. In general, classical two-dimensional QSAR fails to distinguish between stereoisomers. This fact inspired the development of the idea of 3D QSAR. Just the last year brought the concept of 4D QSAR covering quantitative description of conformational effects. On the other hand, the comparative molecular field analysis CoMFA, which is the most common 3D QSAR scheme, demands perfect alignment of the series of molecules analyzed. Moreover, the results critically depend upon the way of overlaying the molecules. The CoMFA and 4D QSAR analyses base on the statistical techniques of the partial least square (PLS) and cross-validation procedure. Both from the theoretical and practical points of view more flexible procedures for the alignment of molecules are needed. A comparative technique of self-organizing neutral network provides one of alternatives allowing for such more flexible visualization and quantitative analysis of molecular similarity. The problem of the molecules alignment can also be solved by the use of a new 2D QSAR technique, the so-called holographic QSAR (HQSAR) which uses fragmental coding of the molecule. Combinatorial chemistry is a method that puts together the randomness of screening and the rationality of design. The idea of combinatorial synthesis consists in the parallel synthesis of the set (combinatorial library) of compounds obtained simultaneously. Depending upon the technique used such libraries can be obtained as complex mixtures of the products of the defined composition or separate compounds. Although it is the diversity of molecular library created by combinatorial procedure that allows for increasing the probability of finding active analogs, combinatorial methods are far from brute randomness. The new methods for the description of the similarity of such libraries have been proposed. The newest trend represented by in vitro nucleic acid selection which is designed to mimic the Nature's evolutionary processes is probably one of the most interesting ideas in drug desing. Just recently this idea has been expanded to small organic molecules.
Rocznik
Strony
1--16
Opis fizyczny
rys., wykr., bibliogr. 85 poz.
Twórcy
autor
  • Zakład Chemii Organicznej, Instytut Chemii Uniwersytetu Śląskiego, ul. Szkolna 9, 40-006 Katowice
  • Zakład Chemii Organicznej, Instytut Chemii Uniwersytetu Śląskiego, ul. Szkolna 9, 40-006 Katowice
Bibliografia
  • [1] H. J. Bohm, G. Klebe, H. Kubinyi, Wirkstoffdesign. Der Weg zum Arzneimittel, Spektrum Akademischer Verlag, Berlin, Oxford 1996, s. 3.
  • [2] T. Brzeziński, Historia medycyny, PZWL, Warszawa 1988, s. 181.
  • [3] Zob. [1] s. 31.
  • [4] A. J. de Koning, J. Chem. Ed. 1976, 53, 521.
  • [5] Zob. [1] s. 35.
  • [6] H. van de Waterbeemd, „Introduction”, [w:] Chemometric Methods in Molecular Design, H. van de Waterbeemd (red.), VCH, Weinheim 1995, s. 1
  • [7] K. F. Koehler, S. N. Rao, J. P. Snyder, Modeling drug-receptor interactions, [w:] Guidebook on Molecular Modeling in Drug Design, N. C. Cohen (red.), Academic Press, New York 1996, s. 235. '
  • [8] H. Kubinyi, QSAR: Hansch analysis and related approaches, [w:] Methods in Medicinal Chemistry, Vol. 1, R. Mannhold, P. Krogsgaard-Larsen, H. Timmerman (red.), VCH, Weinheim 1993, s. 7.
  • [9] P. Kafarski, B. Lejczak, Chemia bioorganiczna, PWN, Warszawa 1994, s. 50.
  • [10] J. Janin, C. Clothia, J. Biol. Chcm., 1990, 265, 16027.
  • [11] E. R. P. Zuiderweg, S. R. van Doren, A. V. Kurochkin, R. P. Neubig, A. Majumdar, Perspect. Drug Discov. Design, 1993, 1, 391.
  • [12] R. M. Glaeser, K. H. Downing, Ultramicroscopy, 1993, 52, 478.
  • [13] Zob. [1] s. 239.
  • [14] C. M. Deane, R. T. Kroemer, W. G. Richards, J. Mol. Graphics, 1997, 15, 170.
  • [15] Zob. [1] s. 451.
  • [16] Zob. [1] s. 465.
  • [17] C. A. Lipiński, Bioisosterism in drug design, [w:] Ann. Rep. Med. Chem., Vol. 21, R. C. Allen (red.), Academic Press, Orlando, s. 283.
  • [18] A. Burger, Isosterism and bioisosterism in drug design, [w:] Progress in Drug Research, Vol. 37, J. Emstl (red.), Birkenhauser Verlag, Basel 1991, s. 287.
  • [19] Zob. [7] s. 281.
  • [20] K. Sen (red.), Molecular Similarity I, II, [w:] Topics in Current Chemistry, Vol. 173, 174, Springer Verlag, Berlin, 1995.
  • [21] Zob. [1] s. 4.
  • [22] O. R. Hansen, Acta Chem. Scand., 1962, 16, 1593.
  • [23] C. Hansch, T. Fuijta, J. Am. Chem. Soc., 1964, 86, 1616.
  • [24] R. F. Rekker, The Hydrophobic Fragmental Constant. Its Derivation and Application. Means of Characterizing Membrane Systems. Pharmacochem Libr. 1, Elsevier, Amsterdam 1977.
  • [25] C. Hansch, A. Leo, Substituent Constant for Correlation Analysis in Chemistry and Biology, Wiley, New York 1979.
  • [26] C. Hansch, A. Leo, S. H. Unger, K H. Kim, D. Nikaitani, E. J. Lien, J. Med. Chem. 1973, 16, 1207.
  • [27] C. Hansch, S. D. Rockwell, P. Y. C. Jow, A. Leo, E. E. Steller, ibid., 1977, 20, 604.
  • [28] R. W. Taf t, [w:] Sferic Effects in Organic Chemistry, M. S. Newman (red.), Wiley, New York 1956, s. 556.
  • [29] A. Verloop, W. Hoogenstraaten, J. Tipker, [w:] Drug Design, Vol. VII, E. J. Ariens (red.), Academic Press, New York 1976, s. 165.
  • [30] L. H. Hall, L. B. Kier, The molecular connectivity Chi Indexes and Kappa Shape Indexes in structure-property modeling, [w:] Reviews in Computational Chemistry, Vol. II, K.B. Lipkowitz, D. B. Boyd (red.), VCH Publishers, New York 1991, s. 367.
  • [31] B. Bersuker, A. S. Dimoglo, The electron-topological approach to the QSAR problem, [w:] ibid., s. 423.
  • [32] G. A. Arteca, Molecular shape descriptors, [w:]: Reviews in Computational Chemistry, Vol. 9, K. B. Lipkowitz, D. B. Boyd (red.), VCH Publishers, New York 1996, s. 191.
  • [33] M. Charton, I. Motoc, Steric Effects in Drug Design, Akademie Verlag, Berlin 1983.
  • [34] K. Samuła, A. Cieniecka, Wstęp do projektowania leków, PZWL, Warszawa 1979.
  • [35] P. P. Mager, Med. Res. Rev., 1997, 17, 505.
  • [36] H. van de Waterbeemd (red.), Chemometric methods in molecular design, [w:] Methods and Principles in Medicinal Chemistry, Vol. 2, R. Mannhold, P. Krogsgaard-Larsen, H. Tim- merman (red.), VCH, Weinheim 1995.
  • [37] H.-B. Burgi, J. D. Dunitz (red.), Structure Correlation, Vol. 1, 2, VCH, Weinheim 1994.
  • [38] L. Eriksson, E. Johansson, Chemom. Intell. Lab. Syst. 1996, 34, 1.
  • [39] P. C. Jurs, T. L. Isenhour, Metody rozpoznawania obrazów w chemii, PWN, Warszawa 1983.
  • [40] W. J. Dunn, S. Wold, Pattern recognition techniques in drug design, [w:] Comprehensive Medicinal Chemistry, Vol. 4: Quantitative Drug Design, C. Hansch, P. G. Sammes, J. B. Taylor (red.), Pergamon Press, Oxford 1990, s. 691.
  • [41] R. Franke, Optimierungsmethoden in der Wirkstofforschung - Quantitative Struktur-Wirkungs-Analyse, Akademie Verlag, Berlin 1980.
  • [42] P. Geladi, B. R. Kowalski, Anal. Chim. Acta, 1986, 185, 1.
  • [43] R. D. Cramer, J. D. Bunce, D. E. Patterson, Quant. Struct.-Act. Relat., 1988, 7, 18.
  • [44] J. Zupan, J. Gasteiger, Neural Netsfor Chemists. An Introduction, VCH, Weinheim 1993.
  • [45] T. Aoyama, Y. Suzuki, H. Ichikawa, J. Med. Chem., 1990, 33, 2583.
  • [46] T. Aoyama, Y. Suzuki, H. Ichikawa, ibid., 1990, 33, 905.
  • [47] T. Aoyama, Y. Suzuki, H. Ichikawa, J. Chem. Inf. Comp. Sci., 1992, 32, 492.
  • [48] I. V. Tetko, A. I. Luik, G. I. Poda, J. Med. Chem., 1993, 36, 811.
  • [49] M. I. Page, Angew. Chem., 1977, 89, 456.
  • [50] D. B. Boyd, Successes of computer-assisted molecular design, [w:] Reviews in Computational Chemistry, K. B. Lipkowitz, D. B. Boyd (red.), VCH Publishers, New York 1990, s. 355.
  • [51] C. Hansch, H. Gao, Chem. Rev., 1997, 97, 2995.
  • [52] S. Borman, C&EN, October 9, 1995, 38.
  • [53] G. R. Marshall, Ann. Rev. Pharmacol. Toxicol., 1987, 27, 193.
  • [54] G. R. Marshall, R. D. Cramer, Trends Pharm. Sei., 1988, 9, 285.
  • [55] R. D. Cramer, D. E. Patterson, J. D. Bunce, J. Am. Chem. Soc., 1988, 110, 5959.
  • [56] H. Kubinyi, Drug Discovery Today, 1997, 2, 457.
  • [57] R. D. Cramer, M. Milne, Streszczenia Am. Chem. Soc. Computer Chemistry Section no. 44, 1979, wg: [7], s. 159.
  • [58] H. Kubinyi, Drug Discovery Today, 1997, 2, 538.
  • [59] Y. Tominaga, I. Fujiwara, J. Chem. Inf. Comp. Sei., 1997, 37, 1158.
  • [60] J. Polański, J. Gasteiger, The comparison of molecular surfaces by an assembly of self organizing neural network, [w:] Computers in Chemistry '94, Technical University of Wroclaw, Wrocław 1994, s. 88.
  • [61] S. Anzali, J. Gasteiger, U. Holzgrabe, J. Polański, J. Sadowski, A. Teckentrup, M. Wagen er, The use of self-organizing neural networks in drug design, [w:] 3D QSAR in Drug Design, Vol. II, H. Kubinyi, G. Folkers, Y. C. Martin (red.), ESCOM, Leiden 1997, s. 273.
  • [62] S. Anzali, G. Barnickel, M. Krug, J. Sadowski, M. Wagener, J. Gasteiger, J. Polański, J. Comp.-Aided Mol. Design, 1996, 10, 521.
  • [63] J. Polański, J. Mol. Struct. (Theochem), 1997, 398-399, 565.
  • [64] J. Polański, Wiad. Chem., 1996, 50, 817.
  • [65] J. Polański, J. Gasteiger, J. Sadowski, M. Wagener, Quant. Struct. Act. Relat., 1988, 17, 27.
  • [66] P. G. Mezey, Molecular surfaces, [w:] Reviews in Computational Chemistry, K. B. Lipkowitz, D. B. Boyd (red.), VCH Publishers, New York 1990, s. 265.
  • [67] W. B. Schweizer, Conformational analysis, [w:] Structure Correlation, Vol. 2, H.-B. Biirgi, J. D. Dunitz (red.), VCH, Weinheim 1994, s. 369.
  • [68] A. J. Hopfinger, S. Wang, J. S. Tokarski, B. Jin, M. Albuquerone, P. J. Madhav, C. Duraiswami, J. Am. Chem. Soc., 1977, 119, 10509.
  • [69] Anonim, materiał firmy Tripos: http://www.tripos.com/products/morehqsar.htm.
  • [70] [39] s. 134.
  • [71] G. Klopman, A. N. Kalos, J. Theor. Biol. 1986, 118, 199.
  • [72] G. Klopman, J. Am. Chem. Soc., 1984, 106, 7315.
  • [73] F. Balkenhohl, C. von dem Bussche-Hiinnefeld, A. Lansky, C. Zechcl, Angew. Chem., Int. Ed. Engl., 1996, 35, 2288.
  • [74] S. Borman, C&EN, February 24, 1997, 43.
  • [75] M. J. Plunkett, J. A. Ellman, Świat Nauki, czerwiec 1997, 26.
  • [76] R. Dagani, C&EN, February 7, 1994, 20.
  • [77] E. J. Corey, X.-M. Chen, The Logic of Chemical Synthesis, John Wiley& Sons, New York 1989, s. 1.
  • [78] F. R. Salemme, J. Spurlino, R. Bone, Structure, 1997, 5, 319.
  • [79] G. Barnickel, J. Gasteiger, G. Klebe, P. Levy, A. Zell, Nachr. Chem. Tech. Lab., 1996, 44, 863.
  • [80] Y. C. Martin, Challenges and prospects for computational aids to molecular diversity, [w:] Perspectives in Drug Discovery and Design 7/8, Klirwer Academic Publishers/ESCOM, 1997, s. 159.
  • [81] R. D. Cramer, R. D. Clark, D. E. Patterson, A. M. Ferguson, J. Med. Chem., 1996, 39, 3060.
  • [82] S. E. Osborne, A. E. Ellington, Chem. Rev., 1997, 97, 349.
  • [83] R. R. Breaker, Chem. Rev., 1997, 97, 371.
  • [84] A. V. Eliseev, M. I. Nelen, J. Am. Chem. Soc., 1997, 119, 1147.
  • [85] T. Naumann (Tripos), informacja prywatna.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0005-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.