Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
How cosmology explains formation of chemical elements?
Języki publikacji
Abstrakty
Cosmology is presented as a branch of science dealing with the Universe. The most important achievement in this field is the Big Bang theory accounting for the formation of the Universe by an explosion 10-25 billion years ego. This event was followed by different processes schematically divided into 'Planc', 'handron', 'lepton', 'radiation|' and 'galaxy' era (Tab. 1). Universal abundance of elements is presented as a relation between logarithm of the elements (or isobars) abundance in the solar system and the atomic (or mass) numbers (Figs 1 and 2). These relations are treated as records of the Universe evolution. Four groups of the nucleosynthesis are presented according to this idea (Tab.2):(1) primary reactions at the beginning of the Universe; (2) 'burning' of light elements inside stars; (3) neutron capture inside stars; (4) photonuclear reactions inside strongly heated-up stars, natural disintegration of heavy elements inside and outside the stars, breaking of heavy elements in the interstellar space. Light chemical elements - from hydrogen to lithium - were created during the first minutes after the Big Bang by primary nucleosynthesis processes (reactions 1-7). This mechanism is responsible for very high abundance of hydrogen (~90% of all atoms in the Universe) and helium (~9%). Heavy elements are produced up to now inside stars. Special attention is paid to description of different stages and ways of star evolution (Fig. 3) and to relations of this processes to the nucleosynthesis inside stars (reactions 8-38). These processes strongly depend on the beginning mass of the star. Stars similar to the Sun are responsible for formation of carbon and oxygen only. In the bigger ones the elements up to the iron group can be formed. In the case of the largest ones supernova phenomenon is possible: the star that has exhausted its nuclear fuel, collapses into a superdense state, and explodes with a final burst of enormous energy. This is responsible for reactions from the group (4).
Wydawca
Czasopismo
Rocznik
Tom
Strony
512--527
Opis fizyczny
tab., wykr., bibliogr. 8 poz.
Twórcy
autor
- Wydział Chemii Uniwersytetu Wrocławskiego , ul. F. Joliot Curie 14, 50-383 Wrocław
- Wydział Chemii Uniwersytetu Wrocławskiego , ul. F. Joliot Curie 14, 50-383 Wrocław
Bibliografia
- [1] D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, McGraw-Hill, New York 1968.
- [2] B. Kuchowicz, J. T. Szymczak, Dzieje materii przez fizyków odczytane, Wiedza Powszechna, Warszawa 1978.
- [3] B. Kuchowicz, Kosmochemia, PWN, Warszawa, 1979.
- [4] M. Heller, J. Życiński, Wszechświat i filozofia, Polskie Towarzystwo Teologiczne, Kraków 1980.
- [5] Encyklopedia fizyki współczesnej, PWN, Warszawa 1983.
- [6] P. J. E. Peebles, D. N. Schramm, E. L. Turner, R. G. Kron, Ewolucja Wszechświata, Świat Nauki, Nr 12, 27 (1994).
- [7] R. Kirshner, Pierwiastki Ziemi, Świat Nauki, Nr 12, 35 (1994).
- [8] P. Atkins, Kraina pierwiastków (seria Science Masters), Wydawnictwo CIS oraz PRESS- PUBLICA, Warszawa 1996.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0074