PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanizm i kinetyka procesów tworzenia oraz zaniku ekscymerów XeCl* w układach Xe-RCl

Identyfikatory
Warianty tytułu
EN
The mechanism and kinetics of formation and decay of XeCl* excimers in Xe-RCl systems
Języki publikacji
PL
Abstrakty
EN
The mechanism and kinetics of decay of excited Xe(6s[3/2]1,2) atoms formed by irradiation of pure Xe by xenon resonance light (l = 147 nm) is presented basing on Moutard et al. [9] reaction scheme (r.(2)-(8)). The mechanism of the decay of higher xenon excited states (6p, 6d, ...) produced by the electron beam is also presented (r.(9)-(14)). On this basis the mechanism and kinetics of energy transfer processes to RCl molecules in Xe-RCl system leading to XeCl(B,C) excimers is discussed. In particular the mechanism and kinetics of two-and three-body reactions of the lowest Xe(6s[3/2]1) state with chlorine donor molecules is presented. It has been shown that the two-body energy transfer reactions (19) occur with the rate constants in the range (3.5-7)ˇ10-10 cm3 ˇs-1 [10, 11, 32, 33] (Tabs.1,2). The yield of XeCl* excimers in these reactions is in the range from 0.02 for HCl up to 1.0 for Cl2 molecule (Tabs 1,2). It has been shown also that at higher xenon pressures (above 20-50 Torr) with reaction (19) competes the fast three-body reaction (23), which also is a source of XeCl* excimers [10, 11]. The rate constants of reaction (23) for a few molecules are shown in Tab. 2. They are in the range (1-2)ˇ10-28 cm6 ˇs-1 and the yields of XeCl* excimers produced in these reactions are from 0.19 for CCl4 up to 0.5 for PCl3. It seems to be important in the construction of excimer lasers that in the case of HCl molecule, often used as a source of XeCl* excimers, the rate constant of three-body energy transfer reaction (23) is extremely high, k23 = 2.2ˇ10-27 cm6ˇs-1 [10] and the yield of XeCl* excimersin this process is equal to zero [10]. The XeCl* excimers decay via fluorescence with the maximum at l =308 nm, for B-X transition and l = 340 nm for C-A transition. The typical spectrum of XeCl* excimers fluorescence is shown in Fig. 5. The fluorescence lifetime (r. (31), (32)) of XeCl* excimers is equal to 11 and 120-130 ns, for B-X and C-A transitions, respectively [46, 58]. There is shown that the above values of XeCl* excimers lifetimes concern excimers at the lowest vibrational level (v = 0) and they increase with v number (see Fig. 7)[43]. The mechanism and kinetics of collisional decay of highly vibrational XeCl(B,C) excimers with buffer gases (He, Ne, Ar, Kr) is also presented (r.(27)-(30)) [43]. The relaxed XeCl(B,C) excimers decay also in the two-and three-body quenching with Xe and RCl molecules. The mechanism and kinetics of above processes is shown (see reaction (35)-(37) and Tab. 4).
Rocznik
Strony
405--429
Opis fizyczny
tab., wykr., bibliogr. 65 poz.
Twórcy
  • Katedra Chemii Fizycznej, Instytut Chemii, Wyższa Szkoła Rolniczo-Pedagogiczna, ul. 3 Maja 54, 08-110 Siedlce
  • Katedra Chemii Fizycznej, Instytut Chemii, Wyższa Szkoła Rolniczo-Pedagogiczna, ul. 3 Maja 54, 08-110 Siedlce
Bibliografia
  • [1] F. Kananri, A. Suda, M. Obara, T. F ujioka, IEEE J. Quant. Electron., 1983, QE-19, 1587.
  • [2] J. J. Ewing, C. A. Brau, Appl. Phys. Lett., 1975, 27, 350.
  • [3] Excimer Lasers, Topics in Appl. Physics, red. C. Rhodes, 1979, 30.
  • [4] S. Popiel, Z. Witkiewicz, Wiad. Chem., 1995, 49, 245.
  • [5] K. Wojciechowski, Procesy przenoszenia wzbudzenia od atomów gazów szlachetnych do cząsteczek w fazie gazowej. Mechanizm i kineityka, wyd. WSRP, Siedlce 1996.
  • [6] T. H. Johnson, M. E. Cartland, T. C. Genoni, A. M. Hunter, J. Appl. Phys., 1989, 66, 707.
  • [7] W. J. Alford, IEEE J. Quant. Electron., 1990, 26, 1633.
  • [8] A. Jówko, Procesy przenoszenia reaktywności podczas radiolizy układów gaz szlachetny - domieszka molekularna, wyd. WSRP, Siedlce 1984.
  • [9] P. Moutard, P. Laporte, J. L. Subtil, N. Damany, H. Damany, J. Chem. Phys., 1988, 88, 7485.
  • [10] K. Wojciechowski, M. Rosa, A. Jówko, M. Foryś, Nukleonika, 1993, 38, 31.
  • [11] K. Wojciechowski, M. Rosa, M. Symanowicz, A. Jówko, M. Foryś, Nukleonika, 1994, 39, 35.
  • [12] N. Bowering, M. R. Bruce, J. W. Keto, J. Chem. Phys., 1986, 84, 715.
  • [13] P. K. Leichner, K. F. Palmer, J. D. Cook, N. Thieneman, Phys. Rev., 1976, A13, 1787.
  • [14] H. D. Wenck, S. S. Hasnain, M. M. Nikitin, K. Sommer, G. Zimmerer, D. Haaks, Chem. Phys. Lett., 1979, 66, 138.
  • [15] T. D. Bonifield, F. H. K. Rambow, G. K. Walters, M. V. McCusker, D. C. Lorents, R. A. Gutcheck, J. Chem. Phys., 1980, 72, 1980, 2914.
  • [16] P. Moutard, P. Laporte, J. L. Subtil, N. Damany, H. Damany, ibid., 1987, 87, 4576.
  • [17] H. Janssens, H. Vanmarcke, E. Desoppere, J. Lenaerts, R. Boucique, W. Wierne, ibid., 1987, 86.
  • [18] D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Tothem, J. A. Betts, M. E. Lain- hart, D. A. Dakin, J. E. Maenchen, J. Appl. Phys., 1988, 64, 1679.
  • [19] P. Moutard, P. Laporte, N. Damany, J. L. Subtil, H. Damany, Chem. Phys. Lett., 1986, 132, 521.
  • [20] D. C. Lorents, Physica,
  • [21] T. H. Johnson, M. E. Cartland, T. C. Genoni, A. M. Hunter, J. Appl. Phys., 1989, 66, 5707.
  • [22] V. A. Adamovich, V. Yu. Baranov, A. A. Deryugin, I. V. Kochetow, D. D. Malyuta, A. P. Naparto vich, Yu. B. Smakovsk-i, P. Strel’tsov, Sov. J. Quant. Electron., 1987,17, 45.
  • [23] L. Veseth, J. Phys., 1973, B6, 1473.
  • [24] M. R. Bruce, W. B. Layne, C. A. Whitehead, J. W. Keto, J. Chem. Phys., 1990, 92,2917.
  • [25] G. Inoue, J. K. Ku, D. W. Setser, ibid., 1984, 81, 5760.
  • [26] H. Horiguchi, R. S. F. Chang, D. W. Setser, ibid., 1981, 75, 1207.
  • [27] W. J. Alford, ibid.., 1992, 96, 4330.
  • [28] R. Cooper, L. S. Denison, P. Zeglinski, C. R. Roy, H. Gillis, J. Appl. Phys., 1984, 63, 1469.
  • [29] A. Jówko, M. Foryś, E. Bartkiewicz, J. Radioanal. Nuci. Chem. Articles, 1990,140,421.
  • [30] P. Millet, A. Birot, J. Galy, B. Pons-Germain, J. L. Teyssier, J. Chem. Phys., 1978,69, 92.
  • [31] J. E. Velazco,J. H. Klots, D. W.Setser, ibid., 1976, 65, 3468.
  • [32] J. E. Velazco,J. H. Klots, D. W.Setser, ibid., 1978, 69, 4357.
  • [33] J. H. Klots, J.E. Velazco, D. W.Setser, ibid., 1979, 71, 1247.
  • [34] X. Chen, D. W. Setser, J. Phys. Chem., 1991, 95, 8473.
  • [35] A. Jówko, E. Bartkiewicz, M. Foryś, J. Radioanal. Nuci. Chem. Articles, 1992, 159,249.
  • [36] A. Jówko, J. Kowalczyk, K. Wojciechowski, M. Foryś, Radiat. Phys. Chem. 1996,48, 481.
  • [37] K. Wojciechowski, J. Kowalczyk, A. Jówko, ibid., 1998, w druku.
  • [38] J. H. Klots, D. W. Setser, J. Phys. Chem., 1978, 82, 1766.
  • [39] M. R. Bruce, W. B. Layne E. Meyer, J. W. Keto, J. Chem. Phys., 1990, 92, 420.
  • [40] J. K. Ku, D. W. Setser, ibid, 1986, 84, 4304.
  • [41] H. C. Brashears, D. W. Setser, J. Phys. Chem., 1980, 84, 226.
  • [42] H. C. Brashears, D. W. Setser, Y. C. Yu., ibid., 1981, 74, 10.
  • [43] T. D. Dreiling, D. W. Setser, J. Chem. Phys., 1981, 75, 4360.
  • [44] D. J. Wren, D. W. Setser, J. K. Ku, J. Phys. Chem., 1982, 86, 284.
  • [45] Y. C. Yu, D. W. Setser, H. Horiguchi, ibid., 1983, 87, 2199.
  • [46] G. Inoue, J. K. Ku, D. W. Setser, J. Chem. Phys., 1984, 80, 6006.
  • [47] J. Tellinghuisen, D. McKeever, Chem. Phys. Lett., 1980, 72, 94.
  • [48] K. Tamagake, J. H. Klots, D. W. Setser, J. Chem. Phys. 1979, 71, 1264.
  • [49] A. Sur, A. K. Hui, J. Tellinghuisen, J. Mol. Spectrosc., 1979, 74, 465.
  • [50] Y. C. Yu, D. W. Setser, H. Horiguchi, J. Phys. Chem., 1983, 87, 2199.
  • [51] C. Jouvet, C. Lardeux-Dedoner, D. Solgati, Chem. Phys. Lett., 1989, 94, 570.
  • [52] E. Quinones, Y. C. Yu, D. W. Setser, G. Lo, J. Chem. Phys., 1990, 93, 333.
  • [53] L. Daimay, Y. C. Yu, D. W. Setser, ibid., 1984, 81, 5830.
  • [54] Y. C. Yu, J. Photochem. and Photobiol, 1989, A47, 259.
  • [55] G. P. Glass, F. K. Tittel, W. L. Wilson, M. S. Smayling, G. Marowsky, Chem. Phys. Lett., 1981, 83, 585.
  • [56] Y. C. Yu, S. J. Wategaonkar, D. W. Setser, J. Chem. Phys, 1992, 96, 8914.
  • [57] T. O. Nelson, D. W. Setser, J. Qin, J. Phys. Chem, 1993, 97, 2585.
  • [58] P. J. Hay, T. H. Dunnmg, J. Chem. Phys, 1978, 69, 2209.
  • [59] D. C. Lorents, Proceedings of the International Corference on Lasers, San Francisco, California, 1984, s. 575.
  • [60] J. Le Calve, M. C. Castex, B. Jordan, G. Zimmerer, T. Meller, D. Haaks, Photo- physics and Photochemistry above 6 eV, wyd. F. Lahmani, Elsevier, Amsterdam, 1985, s. 639.
  • [61] K. Y. Tang, D. C. Lorents, D. L. Huestis, Appl. Phys. Lett, 1979, 36, 347.
  • [62] H. P. Grieneisen, H. Xue-Jing, K. L. Kompa, Chem. Phys. Lett.„ 1981, 82, 421.
  • [63] J. K. Ku, D. W. Setser, Appl. Phys. Lett, 1986, 48, 687.
  • [64] T. G. Finn, R. S. F. Chang, L. J. Palumbo, L. F. Champange, ibid., 1980, 36, 789.
  • [65] L. A. Lein, S. E. Moody, E. L. Klosterman, R. E. Center, J. J. Ewing, IEEE J. Quant. Electron, 1981, QE-17, 2282.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.