Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Application of ion cyclotron resonance mass spectrometry to the study of proton-transfer reactions in the gas phase
Języki publikacji
Abstrakty
The principle of ion cyclotron resonance (ICR) reported in 1930 by Lawrence et al. [9] was firstly applied in mass spectrometry by Hipple, Sommer and Thomas in 1949 [26]. Their instrument has never been commercilized due to several problems with electronics and vacuum. Next instrument constructed by Wobschall et al. In the 1960s [27] had more chamce. It was modified by Llewellyn [28] in cooperation with Baldeschwieler et al. [29] and became a commercial Varian mass spectrometer in the late 1960s. Its drift cell contained three separated regions: ion source, analyser and ion collector. Important modification in ICRMS was proposed by McIver in 1970 [10a, b]. He introduced a one region trapped-ion analyzer cell and pulsed mode of operation. First FT-ICR experiments were carried out by Comisarow and Marshall in 1974 [11]. They also applied a one region trapped-ion analyzer cell. The pulsed mode of operation in the one region cell was combined with Fourier transform techniques in first commercial Nicolet FT-ICR mass spectrometer. From this moment the FT-ICR mass spectrometry has become more attractive and more frequently used by chemists. Since ions may be trapped for extended periods prior to detection in an ICR cell, both, ICR and FT-ICR mass spectrometry have been used to the study of gas-phase ion-molecule reactions [1-6]. First experimental gas-phase data of sufficient precision obtained by ICRMS became available from the 1970s for the proton-transfer reactions [2, 7, 8, 10, 41-43]. Relative acidity (DGA) or basicity (DGB) determinations were based on measurements of the equilibrium constants of proton exchange between two anions (A-1 and A-2) or two bases (B1 and B2) [7, 8, 13a]. These reactions have been studied in order to determine intrinsic gas-phase acidities or basicities of compounds and to establish general gas-phase acidity/basicity scale. Presently there are few thousands gas-phase data compiled in this scale by Lias et al. [50]. The upper limit of the GB scale is separated from the lower limit of the GA scale by ca 150 kJ/mol (Fig. 6), and thus spontaneous neutralization reactions between neutral acids and bases can not yet be observed in the gas phase.
Wydawca
Czasopismo
Rocznik
Tom
Strony
385--403
Opis fizyczny
wykr., bibliogr. 55 poz.
Twórcy
autor
- Katedra Chemii Ogólnej, Szkoła Główna Gospodarstwa Wiejskiego, ul. Rakowiecka 26/30, 02-528 Warszawa
- Katedra Chemii Ogólnej, Szkoła Główna Gospodarstwa Wiejskiego, ul. Rakowiecka 26/30, 02-528 Warszawa
Bibliografia
- [1] T. A. Lehman, M. M. Bursey, Ion Cyclotron Resonance Spectromeitry, Wiley-Interscience, New York 1976.
- [2] M.T. Bowers (red.), Gas Phase Ion Chemistry, vols. 1&2, Academic Press, New York 1979.
- [3] M. A. V. Ribeiro de Silva (red.), Termochemistry and Its Applications to Chemical and Biochemical Systems, D. Reidel Publishing Company, 1984.
- [4] J. H. Futrell (red.), Gaseous Ion Chemistry and Mass Spectrometry, Wiley-Interscience, New York 1986.
- [5] J. M. Farrar, W. Saunders Jr. (red.), Techniques for the Study of Ion Molecule Reactions, Wiley, New York 1988.
- [6] a) N. M. M. Nibbering, Adv. Mass Spectrom., 1985 (Pub. 1986), 10,417; b) N. M. M. Nibbering, Reel. Trav. Chim. Pays-Bas, 1986, 105, 245; c) N. M. M. Nibbering, Acc. Chem. Res., 1990, 23, 279; d) N. M. M. Nibbering, Analyst, 1992, 117, 289.
- [7] a) R. W. Taft [w:] Proton-Transfer Reactions, E. Caldin&V. Gold (red.), Chapman&Hall, London 1975, rozdz. 2; b) R. W. Taft, Prog. Phys. Org. Chem., 14, 247; c) R. W. Taft, R. D. Topsom, ibid., 1987, 16, 1.
- [8] J.-F. Gal, P.-C. Maria, ibid., 1990, 17, 159.
- [9] a) E. O. Lawrence, N. E. Edlefsen, Science, 1930, 72, 376; b) E. O. Lawrence, M. S. Livingston, Phys. Rev., 1932, 40, 19.
- [10] a) R. T. Mclver Jr., Rev. Sei. Instrum., 1970, 41, 126; b) R. T. Mclver Jr., ibid., 1970, 41, 555; c) R. T. Mclver Jr., R. C. Dunbar, J. Mass Spectrom. Ion Phys., 1971, 7, 471; d) L. R. Hunter, R. T. Mclver Jr., Chem. Phys. Letters, 1977, 9, 13.
- [11] a) M. B. Comisarow, A. G. Marshall, ibid., 1974, 25, 282; b) M. B. Comisarow, A. G. Marshall, ibid., 1974, 26, 489.
- [12] G. Parisod, T. Gaumann, Chimia, 1980, 34, 271.
- [13] a) M. Berthelot, J.-F. Gal, L’actualite chimique, 1984 (fevrier), 19; b) J.-F. Gal, ibid., 1985, 5, 15.
- [14] M. B. Comisarow, Anal. Chim. Acta, 1985, 178, 1.
- [15] a) A. G. Marshall, Acc. Chem. Res., 1985, 18, 316; b) A. G. Marshall, Adv. Mass Spectrom. 1989 11A, 651; c) A. G. Marshall, P. B. Grosshans, Anal. Chem., 1991, 63, 215A; d) A. R. Marshall, Acc. Chem. Res., 1996, 9, 307; e) A. G. Marshall (red.), Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Elsevier, Amsterdam 1996 (wydanie specjalne Int. J. Mass Spectrom. Ion Processes, 1996, 157/158).
- [16] D. H. Russell, Mass Spectrom. Rev., 1986, 5, 167.
- [17] a)N. M. M. Nibbering, Adv. Phys. Org. Chem., 1988, 24,1; b) N. M. M. Nibbering, Adv. Mass Spectrom., 1989, 11A, 101 ; c) N. M. M. Nibbering, Trends Anal. Chem., 1994,13,223.
- [18] a) K. P. Wanczek, Int. J. Mass Spectrom. Ion Processes, 1984, 60, 11; b) K. P. Wanczek, ibid., 1989, 95, 1.
- [19] R. Houriet, Adv. Mass Spectrom., 1989, 11a, 626.
- [20] M. Buchanan, R. L. Hettich, Anal. Chem., 1993, 65, 245A.
- [21] C. L. Holliman, D. L. Rempel, M. L. Gross, Mass Spectrom. Rev., 1994, 13, 105.
- [22] R. Mazurkiewicz, Wiad. Chem., 1995, 49, 265.
- [23] M. V. Buchanan (red.), Fourier Transform Mass Spectrometry, Evolution, Innovation and Applications, American Chemical Society Symposium Series, vol. 359, Washington, D. C. 1987.
- [24] C. L. Wilkins, A. K. Chowdhury, L. M. Nuwaysir, M. L. Coates, Mass Spectrom. Rev., 1989, 8, 67.
- [25] a) P. Kebarle [w:] Ions and Ion Pairs in Organic Reactions, M. Szwarc (red.), Wiley- Interscience, New York 1972, rozdz. 2; b) P. Kebarle [w:] Interactions Between Ion and Molecules, P. Ausloos (red.), Plenum, New York 1975; c) P. Kebarle, Ann. Rev. Phys. Chem., 1977, 28, 445; d) P. Kebarle [w:] Techniques for the Study of Ion Molecules -Reac- tions, J. M. Farrar&W. Saunders Jr. (red.), Wiley, New York 1988, rozdz. 5.
- [26] a) H. Sommer, H. A. Thomas, J. A. Hippie, Phys. Rev., 1949, 76, 1877; b) H. Sommer, H. A. Thomas, J. A. Hippie, ibid., 1951, 82, 697.
- [27] a) D. Wobschall, J. R. Graham, D. P. Malone, Phys. Rev., 1963, 131, 1565; b) D. Wobschall, Rev. Sei. Instrum, 1965, 36, 466.
- [28] P. Llewellyn, U. S. Patent 3505517, 1970.
- [29] a) J. D. Baldeschwieler, E. W. Randall, Acc. Chem. Res., 1963, 63, 81; b) L. R. Anders, J. L. Beauchamp, R. C. Dunbar, J. D. Baldeschwieler, J. Chem. Phys., 1966, 45, 1062; c) J. B. Baldeschwieler, Science, 1968, 159, 263.
- [30] G. W. Ewing, Metody instrumentalne w analizie chemicznej (tłum. z ang.), PWN, Warszawa 1980, s. 415.
- [31] K. L. Busch, G. L. Glish, S. A. McLuckey, Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry, VCH, New York 1988.
- [32] P. Caravatti, M. Allemann, Org. Mass Spectrom., 1991, 26, 514.
- [33] a) D. Lubman (red.), Lasers and Mass Spectrometry, Oxford University Press, New York 1990; b) D. P. Land, C. L. Pettiette-Hall, J. C. Hemminger, R. T. Mclver Jr., Acc. Chem. Res., 1991, 24, 42.
- [34] a) D. F. Hunt, J. Shabanowitz, R. T. Mclver Jr., R. L. Hunter, J. E. P. Syka, Anal. Chem., 1985, 67, 765; b) C. F. Ijames, C. L. Wilkins, J. Am. Soc. Mass Spectrom., 1990, 1, 208.
- [35] a) I. J. Amster, F. W. McLafferty, M. E. Castro, D. H. Russell, R. B. Cody Jr., C. E. Brown, Anal. Chim. Acta, 1986, 58, 483; b) J. A. Loo, E. R. Williams, I. J. Amster, J. J. P. Furlong, B. H. Wang, F. W. McLafferty, B. T. Chait, F. H. Field, Anal. Chem., 1987, 59, 1882; c) C. B. Lebrilla, D. T.-S. Wang, R. L. Hunter, R. T. Mclver Jr., ibid., 1990, 62, 878.
- [36] a) M. Yamashita, J. B. Fenn, J. Phys. Chem., 1984, 88, 4451; b) J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Science, 1985, 246, 64; c) K. D. Henry, F. W. McLafferty, Org. Mass Spectrom., 1990, 25, 490; d) S. A. Hofstadler, D. A. Laude Jr., Anal. Chem., 1992, 64, 569; e) J. E. Bruce, X. Cheng, R. Bakhtiar, Q. Wu, S. A. Hofstadler, G. A. Anderson, R. D. Smith, J. Am. Chem. Soc., 1994, 116, 7839.
- [37] P. Pfaendler, G. Bodenhausen, J. Rapin, R. Houriet, T. Gaeumann, Chem. Phys. Lett., 1987, 138, 195.
- [38] a) L. J. de Koning, C. W. F. Kort, F. A. Pinkse, N. M. M. Nibbering, Int. J. Mass Spectrom. Ion Processes, 1989, 95, 71; b) A. J. R. Heck, L. J. de Koning, F. A. Pinkse, N. M. M. Nibbering, Rapid Commun. Mass Spectrom., 1991, 5, 406.
- [39] a) S. Bourcier, Y. Hoppilłiard, T. Kargar, Spectra Analyse, 1994, 178, 29; b) H. E. Audier, T. B. McMahon, J. Am. Chem. Soc., 1994, 116, 8294.
- [40] a) S. G. Lias, J. F. Liebman, R. D. Levin, J. Phys. Chem. Ref. Data, 1984, 13, 695; b) S. G. Lias, J. E. Bartmess, J. L. Holmes, R. D. Levin, J. F. Liebman, W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. 1.
- [41] a) R. T. Mclver Jr., J. R. Eyler, J. Am. Chem. Soc., 1971, 93, 6334; b) E. M. Arnett, F. M. Jones III, M. Taagepera, W. G. Henderson, J. L. Beauchamp, D. Holtz, R. W. Taft, ibid., 1972, 94, 4724; c) W. G. Henderson, M. Taagepera, D. Holtz, R. T. Mclver, J. L. Beauchamp, R. W. Taft, ibid., 1972, 94, 4728.
- [42] a) M. T. Bowers, D. H. Aue, H. M. Webb, R. T. Mclver Jr., ibid., 1971, 93, 4113; b) D. H. Aue, H. M. Webb, M. T. Bowers, ibid., 1972, 94, 4726; c) D. H. Aue, H. M. Webb, M. T. Bowers, ibid., 1973, 95, 2699; d) D. H. Aue, H. M. Webb, M. T. Bowers, ibid., 6, 98, 311.
- [43] T. B. McMahon, J. L. Beauchamp, Rev. Sci. Instrum., 1972, 43, 509.
- [44] G. Boaud, R. Houriet, T. Gaumann, J. Am. Chem. Soc., 1983, 105, 2203.
- [45] a) R. A. L. Peerboom, S. Ingemann, N. M. M. Nibbering, J. E. Liebman, J. Chem. Soc., Perkin Trans. 2, 1990, 1825; b) H. E. K. Matimba, A. M. Crabbendam, S. Ingemann, N. M. M. Nibbering, J. Chem. Soc., Chem. Commun., 1991, 644.
- [46] a) J.-F. Gal, P.-C. Maria, M. Decouzon, Int. J. Mass Spectrom. Ion Processes, 1989, 93, 83; b) M. Decouzon, J.-F. Gal, S. Geribaldi, P.-C. Maria, M. Rouillard, SPECTRA 2000, 1989, 17, 51.
- [47] J-L. M. Abboud, R. Notario, J. Chim. Phys., 1992, 89, 1531.
- [48] M. Mishima, M. Fujio, Y. Tsuno, Mem. Fac. Sci., Kyushu Univ., Ser. C, 1984, 14(2), 365.
- [49] A. Hulanicki, Reactions of Acids and Bases in Analytical Chemistry, PWN, Warszawa 1987.
- [50] a) M. Decouzon, J.-F. Gal, P.-C. Maria, E. D. Raczyńska, J. Org. Chem., 1991, 56, 3669; b) E. D. Raczyńska, P.-C. Maria, J.-F. Gal, M. Decouzon, ibid., 1992, 57, 5730; c) M. Decouzon, J.-F. Gal, P.-C. Maria, E. D. Raczyńska, Rapid Commun. Mass Spectrom., 1993, 7, 599; d) E. D. Raczyńska, P.-C. Maria, J.-F. Gal, M. Decouzon, J. Phys. Org. Chem., 1994, 7, 725.
- [51] J. C. Kleingeld, N. M. M. Nibbering, H. Halim, H. Schwarz, E.-U. Wurthwein, Chem. Ber., 1983, 116, 3877.
- [52] a) R. Schwesinger, Nachr. Chem. Tech. Lab., 1990, 38, 1214; b) R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, D. Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish, G.-Z. Ji, E.-M. Peters, K. Peters, H. G. von Schnering, L. Walz, Liebigs Ann. 1996, 1055.
- [53] I. A. Koppel, R. W. Taft, F. Anvia, S.-Z. Zhu, L.-Q. Hu, K.-S. Sung, D. D. Des Marteau, L. M. Yagupolskii, Y. L. Yagupolskii, N. V. Ignat'ev, N. V. Kondraten- ko, A. Y. Volkonskii, V. M. Vlasov, R. Notario, P.-C. Maria, J. Am. Chem. Soc., 1994, 116, 3047,
- [54] M. Borgarello, R. Houriet, E. D. Raczyńska, T. Drapała, J. Org. Chem., 1990, 55, 38.
- [55] a) R. W. Taft, E. D. Raczyńska, P.-C. Maria, I. Leito, J.-F. Gal, M. Decouzon, T. Drapała, F. Anvia, Pol. J. Chem., 1995, 69, 41; b) R. W. Taft, E. D. Raczyńska, P.-C. Maria, I. Leito, W. Lewandowski, R. Kurg, J.-F. Gal, M. Decouzon, F. Anvia, Fresenius J. Anal. Chem, 1996, 355, 412.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0069