PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetyka rozrywania wiązania w aromatycznych anionorodnikach oraz ich tworzenia

Autorzy
Identyfikatory
Warianty tytułu
EN
Kinetics of the cleavage of aromatic anion radicals and of their formation
Języki publikacji
PL
Abstrakty
EN
The theoretical model proposed by Savéant [10] for the kinetics of the cleavage of aromatic anion radicals containing potential leaving groups and of their formation from aryl radicals and nucleophiles (essential steps of the SRN1 mechanism, shown in the Scheme 1) is presented. In that model the bond cleavage in anion radicals is viewed as an intramolecular dissociative one electron transfer and the reverse reaction as an associative single-electron transfer. It leads to the quadratic relationship of the activation barrier DG= and the reaction driving force DG0 (eq. (9)), similar to the classic equation of the Marcus theory for the outer-sphere electron transfer. Experimental consequences of the Savéant model are also reviewed. They include the relationship between the cleavage rate constants k4 and the formal potentials of the radical anion formation E0RX?RX for the series of aryl chlorides and bromided in DMF (Fig. 3), solvent effects on the k4 values (Chapter 4) and the effect of substituents (Chapter 5). In particula, it was shown that the solvent effect on the thermodynamic contribution to the activation free-energy causes the increase of the cleavage rate constant for chloroanthracene radical anions with the solvent acceptor number (Fig. 4). However, for the dissociationof the C-Cl bond in radical anions of 4-chlorobenzophenone the solvent effect on the intrinsic activation barrier DG0=, given by eqs (13) and (14), is dominant and the intrinsic rate constant depends (Fig.5) on the solvent Pekar factor (1/eop -1/e0). The use of the Hammett equation to the cleavage rate constants is also discussed; it works in the case when the thermodynamic contribution to the activation barrier (eq. (12)) strongly depends on a substituent (Fig.6). All the reviewed experimental data on the kinetics of the bond cleavage and the formation of radical anions can be rationalized on the basis of the Savéant model.
Rocznik
Strony
367--382
Opis fizyczny
schem., wykr., bibliogr. 41 poz.
Twórcy
  • Wydział Chemii, Uniwersytet Warszawski, ul. Pasteura 1, 02-093 Warszawa
  • Wydział Chemii, Uniwersytet Warszawski, ul. Pasteura 1, 02-093 Warszawa
Bibliografia
  • [1] J. K. Kim, J. F. Bunnett, J. Am. Chem. Soc., 1970, 92, 7463.
  • [2] R. A. Rossi, R. H. Rossi, Aromatic Substitution by the SRN1 Mechanism, ACS Monograph 178, Washington, 1983.
  • [3] W. R. Bowman, Chem. Soc. Rev., 1988, 17, 283.
  • [4] J-M. Saveant, Adv. Phys. Org. Chem., 1990, 26, 1.
  • [5] J. F. Bunnett, Tetrahedron, 1993, 49, 4477.
  • [6] R. A. Rossi, S. M. Palacios, ibid., 1993, 49, 4485.
  • [7] J.-M. Saveant, ibid., 1994, 50, 10117.
  • [8] R. A. Marcus, J. Chem. Phys., 1956, 24, 4966.
  • [9] R. A. Marcus, Faraday Discuss., 1982, 74, 7.
  • [10] J.-M. Saveant, J. Phys. Chem., 1994, 98, 3716.
  • [11] J.-M. Saveant, Acc. Chem. Res., 1993, 26, 455.
  • [12] J.-M. Saveant, J. Am. Chem. Soc., 1987, 109, 6788.
  • [13] J.-M. Saveant, ibid., 1992, 114, 10595.
  • [14] C. P. Andrieux, A Le Gorande, J.-M. Saveant, ibid., 1992, 114, 6892.
  • [15] C. P. Andrieux, E. Differding, M. Robert, J.-M. Saveant, ibid., 1993, 115, 6592.
  • [16] C. P. Andrieux, M. Robert, F. D. Saeva, J.-M. Saveant, ibid., 1994, 116, 7864.
  • [17] B. Speiser, Angew. Chem., Int. Ed. Engl., 1996, 35, 2471.
  • [18] C. P. Andrieux, J.-M. Saveant, A. Tallec, R. Tardivel, C. Tardy, J. Am. Chem. Soc., 1997, 119, 2420.
  • [19] C. P. Andrieux, J.-M. Saveant, D. Zann, Nouv. J. Chem., 1984, 8, 107.
  • [20] D. Behar, P. Neta, J. Phys. Chem., 1981, 85, 690.
  • [21] N. Kimura, S. Takamuku, J. Am. Chem. Soc., 1995, 117, 8023.
  • [22] N. Kimura, S. Takamuku, ibid., 1994, 116, 4087.
  • [23] N. Kimura, S. Takamuku, Bull. Chem. Soc. Jpn., 1992, 65, 1668.
  • [24] K. Daasbjerg, S. U. Pedersen, H. Lund, Acta Chem. Scand., 1991, 45, 424.
  • [25] C. P. Andrieux, G. Delgado, J.-M. Saveant, K. B. Su, J. Electroanal. Chem., 1993, 348, 141.
  • [26] W. Adcock, C. P. Andrieux, C. I. Clark, A. Neudeck, J.-M. Saveant, C. Tardy, J. Am. Chem. Soc., 1995, 117, 8285.
  • [27] J. S. Jaworski, P. Leszczyński, S. Filipek, J. Electroanal. Chem., 1997, 440, 163.
  • [28] C. P. Andrieux, J.-M. Saveant, A. Tallec, R. Tardivel, C. Tardy, J. Am. Chem. Soc., 1996, 118, 9788.
  • [29] P. Maslak, T. M. Vallombroso, W. H. Chapman, J. N. Narvaez, Angew. Chem., Int. Ed. Engl., 1994, 33, 73.
  • [30] A. Anne, S. Fraoua, J. Moiroux, J.-M. Saveant, J. Am. Chem. Soc., 1996, 118, 3938.
  • [31] C. Amatore, C. Combellas, J. Pinson, M. A. Oturan, S. Robveille, J.-M. Saveant, A. Thiebault, ibid., 1985, 107, 4846.
  • [32] D. O. Wipf, R. M. Wightman, Anal. Chem., 1990, 62, 98.
  • [33] V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York, 1978.
  • [34] J. S. Jaworski, P. Leszczyński, J. Tykarski, J. Chem. Res. (S), 1995, 510.
  • [35] A. Pross, Adv. Phys. Org. Chem., 1977, 14, 69.
  • [36] C. P. Andrieux, M. Robert, J.-M. Saveant, J. Am. Chem. Soc., 1995, 117, 9340.
  • [37] J- S. Jaworski, P. Leszczyński, J. Electronal. Chem., 1997, w druku.
  • [38] M. L. Andersen, N. Mathivanan, D. D. M. Wayner, J. Am. Chem. Soc., 1996,118,4871.
  • [39] J. S. Jaworski, P. Leszczyński, Tetrahedron Lett., 1996, 22, 33.
  • [40] J. S. Jaworski, J. Chem. Res. (S), 1997, 412.
  • [41] C. P. Andrieux, G. Delgado, J.-M. Saveant, J. Electroanal. Chem., 1993, 348, 123.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.