PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowania reakcji Mitsunobu w chemii aminokwasów

Identyfikatory
Warianty tytułu
EN
Applications of the Mitsunobu reaction in chemistry of amino acids
Języki publikacji
PL
Abstrakty
EN
The Mitsunobu reaction has been knowm since the late sixties. It is mediated by the redox system : triaryl - or trialkylphosphine/dialkyl azodicarboxylate and brings about the nucleophilic substitution of an alcoholic hydroxyl group by the conjugate base of an acidic reactant, with inversion of configuration at the alkohol carbon. The Mitsunobu reaction is widely used in organic chemistry and its mechanism (Scheme 1) has been intensively studied (for review - see [2-5]). This article deals with the application of the reaction in the chemistry of amino acids. The reaction was proposed as an effective method of a-amino acid synthesis using hydroxy acids as substrates. As the amino group synthons phtalimide [10, 11], (Scheme 2), hydrazoic acid [14], (Scheme 5) or t-butyl-2(trimethylsilil)ethylsulphonylcarbamate [18], (Scheme 7) were used. The procedure using HN3 was profoundly improved by the introduction of a stable bis-pyridine complex of zinc oxide [16]. The use of phtalimide as an amino group precursor in Mitsunobu-type reaction was successfully applied to the synthesis of 2-2H-labelled chiral glycine [13], (Scheme 4). In the model studies on the synthesis of 15N-labelled N-protected chiral amino acids Degerbeck et al. [17] found that the yield of the Mitsunobu conversion (Scheme 6) depends on the acidity of the NH function in the imidocarbonate or sulphonylcarbamate used. The Mitsunobu reaction has also been applied to the synthesis of many unnatural or modified amino acids such as protected 2,3-diamino butyric acid [19], 3- or 4- mercaptoproline derivatives [20, 21], (Scheme 8), N5-acetyl-N5-hydroxy-L-ornitine [22], (Scheme 9) and a-N-hydroxyamino acids [23], (Scheme 10). Wojciechowska et aal[24] have reported the preparation of dehydroamino acids from protected serine and threonine derivatives under the intramolecular Mitsunobu dehydration condition (Scheme 11). A general approach to the preparation of N-monoalkylated amino acids based on the Mitsunobu reaction has been developed [3-] using N-tosylamino acid esters as acidic components of the reaction (Scheme 15). Since the removal of tosyl group is difficult, a modification of the N-alkylation procedure has recently been devised [32, 33]. The Mitsunobu reaction is also an excellent procedure for transforming hydroxy acids or hydroxy amino acids into esters whose subsequent hydrolysis leads to a stereoisomer of the initial compound with the inverted configuration at the carbinol centre and was very often used in this way [37, 38], (Schemes 8 and 17). The Mitsunobu reaction provides also an interesting method of esterification in which an alcohol, not a carboxylic component, is activated. It was used to the synthesis of diphenylmethyl esters of N-trityl amino acids [43], to the attachment of a first amino acid to the polymer support [44] or to active ester synthesis [45], (Scheme 18). The applications of the Mitsunobu reaction include also the preparation of amny cyclic derivatives of amino acids such as B-lactams [51], (Scheme 20), aziridines [49, 54], (Schemes 19, 21) or B-lactons [60]. The last cyclic derivatives are valuable intermediates for the synthesis of B-substituted alanines (Scheme 22). B-Lactonization proceeds easily in case of serine derivatives whereas in threonine derivatives B-elimination is the dominant reaction [61], (Scheme 23). The review deals also with the application of the title reaction to the synthesis of peptide (polyamide) nucleic acids (PNA) [31, 39, 40, 68-70].
Rocznik
Strony
243--267
Opis fizyczny
Bibliogr. 70 poz., schem.
Twórcy
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18, 80-952 Gdańsk
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18, 80-952 Gdańsk
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18, 80-952 Gdańsk
  • Katedra Biotechnologii, Międzyuczelniany Wydział Biotechnologii Uniwersytetu Gdańskiego i Akademii Medycznej w Gdańsku, ul. Kładki 24, 80-822 Gdańsk
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18, 80-952 Gdańsk
Bibliografia
  • [1] M. Wada, O. Mitsunobu, Tetrahedron Lett., 1972, 1279.
  • [2] O. Mitsunobu, Synthesis, 1981, 1.
  • [3] D. Jenkins, O. Mitsunobu, [w:] Encyclopedia of Reagents for Organic Synthesis, vol. 8, red. L. A. Paquelle, Wiley, 1995, s. 5379.
  • [4] D. L. Hughes, Org. React., 1992, 42, 337.
  • [5] D. L. Hughes, Org. Prep. Proced. Int., 1996, 23, 127.
  • [6] T. Tsunoda, Y. Yamamiya, S. Ito, Tetrahedron Lett., 1993, 34, 1639.
  • [7] T. Tsunoda, J. Otsuka, Y. Yamamiya, S. Ito, Chem. Lett., 1994, 539.
  • [8] T. Tsunoda, Y. Yamamiya, Y. Kawamura, S. Ito, Tetrahedron Lett., 1995, 36, 2529.
  • [9] T. M- Gajda, Badania nad wykorzystaniem reakcji Mitsunobu i przemian pokrewnych w syn¬tezie a-heteropodstawionych fofonianów i ich analogów fosfinowych oraz 1,3-aminoalkoholi (rozprawa habilitacyjna), Politechnika Łódzka, Łódź 1995.
  • [10] O. Mitsunobu, M. Wada, T. Sano, J. Am. Chem. Soc., 1972, 94, 679.
  • [11] M. Wada, T. Sano, O. Mitsunobu, Buli. Chem. Soc. Jpn., 1973, 46, 2833.
  • [12] H. Morimoto, T. Furokawa, K. Mijazima, O. Mitsunobu, Chem. Lett., 1973, 821.
  • [13] K. Ramalingam, P. Nanjappan, D. M. Kalvin, R. W. Woodard, Tetrahedron, 1988, 44, 5597.
  • [14] E. Fabiano, B. T. Golding, M. M. Sadeghi, Synthesis, 1987, 190.
  • [15] J. March, Advanced Organie Chemistry. Reactions, mechanisms and Structure, Wiley-Interscience Publication, John Wiley and Sons, New York 1992, s. 1220.
  • [16] M. C. Viaud, P. Rollin, Synthesis, 1990, 130.
  • [17] F. Degerbeck, B. Fransson, L. Grehn, U. Ragnarson, J. Chem. Soc. Perkin Trans. 1, 1992, 245.
  • [18] J. A. Campbell, D. J. Hart, J. Org. Chem., 1993, 58, 2900.
  • [19] U. Schmidt, K. Mundinger, B. Riedl, G. Haas, R. Lau, Synthesis, 1992, 1201.
  • [20] S. A. Kołodziej, G. V. Nikiforovich, R. Skeean, M.-F. Lignon, J. Martinez, G. R. Marshall, J. Med. Chem., 1995, 38, 137.
  • [21] S. A. Kołodziej, G. R. Marshall, [w:] Peptides: Chemistry, Structure and Biology, red. P. T. P. Kaumaya, R. S. Hodges, Mayflower Scientific Ltd., 1996, s. 833.
  • [22] E. K. Dolence, C.-E. Lin, M. J. Miller, J. Med. Chem., 1991, 34, 956.
  • [23] T. Kolasa, M. J. Miller, J. Org. Chem., 1987, 52, 4978.
  • [24] H. Wojciechowska, R. Pawłowicz, R. Andruszkiewicz, J. Grzybowska, Tetrahed¬ron Lett., 1978, 19, 4063.
  • [25] J. Mulzer, G. Funk, Synthesis, 1995, 101.
  • [26] M. Abarghaz, A. Kerbal, J.-J. Bourguignon, Tetrahedron Lett., 1995, 36, 6463.
  • [27] K. Wiśniewski, Wiad. Chem., 1997, 51, 63.
  • [28] J. R. Henry, L. R. Marcin, M. H. McIntosh, P. M. Scola, G. D. Harris Jr., S. M. Weinreb, Tetrahedron Lett., 1989, 30, 5709.
  • [29] G. Stavropoulos, C. Athanassopoulos, V. Magafa, D. Papaioannou, [w:] Peptides 1992, Proceedings of the 22nd Symposium of European Peptide Society, red. C. H. Schneider, A. N. Eberle, Interlaken, ESCOM Science Publishers 1993, s. 173.
  • [30] D. Papaioannou, C. Athanassopoulos, V. Magafa, N. Karamanos, G. Stavro¬poulos, A. Napoli, G. Sindona, D. W. Aksnes, G. W. Francis, Acta Chem. Scand., 1994, 48, 324.
  • [31] B. Falkiewicz, L. Łankiewicz, K. Wiśniewski, N. Liberek, [w:] Peptides 1996, Pro¬ceedings of the 24th Symposium of European Peptide Society, Edinburgh, Mayflower Scientific, 1998.
  • [32] K. Wiśniewski, A. S. Kołodziejczyk [w:] Peptides 1996, Proceedings of the 24th Sym-posium of European Peptide Society, Edinburgh, Mayflower Scientific, 1998.
  • [33] K. Wiśniewski, A. S. Kołodziejczyk, Tetrahedron Lett., 1997, 38, 483.
  • [34] S. S. Bhagwat, C. Gude, ibid, 1994, 35, 1847.
  • [35] J. Koppel, F. Degerbeck, L. Grehn, U. Ragnarsson, J. Org. Chem, 1991, 56, 7172.
  • [36] D. Papaioannou, G. Stavropoulos, K. Karagiannis, G. W. Francis, T. Brekke, D. W. Aksnes, Acta Chem. Scand, 1990, 44, 243.
  • [37] D. Papaioannou, C. Athanassopoulos, V. Magafa, K. Karagiannis, N. Karama¬nos, G. Stavropoulos, A. Napoli, G. Sindona, D. W. Aksnes, G. W. Francis, A. Aaberg, ibid., 1995, 49, 103.
  • [38] A. Golubev, N. Sewald, K. Burger, Tetrahedron Lett, 1995, 36, 2037.
  • [39] G. Lowe, T. Vilaivan, J. Chem. Soc. Perkin Trans. 1, 1997, 539.
  • [40] S. Jordan, C. Schwemler, W. Kosch, A. Kretschmer, E. Schwenner, U. Stropp, B. Mielke, Bioorg. Med. Chem. Lett, 1997, 7, 681.
  • [41] M. Pasto, A. Moyano, M. A. Pericas, A. Riera, Tetrahedron Asymm, 1996, 7, 243.
  • [42] T. Kurihara, Y. Nakajima, O. Mitsunobu, Tetrahedron Lett, 1976, 2455.
  • [43] K. Barlos, J. Kallitsis, P. Mamos, S. Patrianakou, G. Stavropoulos, Liebigs Ann. Chem, 1987, 633.
  • [44] K. Barlos, D. Gatos, J. Hondrelis, J. Matsoukas, G. J. Moore, W. Schafer, P. Sotiriou, ibid., 1989, 951.
  • [45] E. Grochowski, J. Jurczak, Synthesis, 1977, 277.
  • [46] J. A. Dodge, J. I. Trujillo, M. Presnel, J. Org. Chem, 1994, 59, 234.
  • [47] R. Hulst, A. van Basten, K. Fitzpatrick, R. Kellog, J. Chem. Soc. Perkin Trans. 1, 1995, 2961.
  • [48] P. J. Harvey, M. von Itzstein, I. D. Jenkins, Tetrahedron, 1997, 53, 3933.
  • [49] S. Wattanasiu, F. G. Kathawa, Synth. Commun, 1992, 22, 1487.
  • [50] P. G. Mattingly, J. F. Kerwin, Jr, M. J. Miller, J. Am. Chem. Soc, 1979, 101, 3983.
  • [51] M. J. Miller, P. G. Mattingly, M. A. Morrison, J. F. Kerwin Jr, ibid., 1980,102, 7026.
  • [52] R. B. Sykes, C. M. Cimarusti, D. P. Bonner, K. Bush, D. M. Floyd, N. H. Geor- gopapadakou, W. M. Koster, W. C. Liu, W. L. Parker, P. A. Principe, M. L. Rath- num, W. A. Slusarchyk, W. H. Trejo, J. S. Wells, Nature (London), 1981, 291, 489.
  • [53] D. M. Floyd, A. W. Fritz, J. Plusec, E. R. Weaver, C. M. Cimarusti, J. Org. Chem, 1982, 47, 5160.
  • [54] A. K. Bose, M. S. Manhas, D. P. Sahu, V. R. Hedge, Can. J. Chem., 1984, 62, 2498.
  • [55] A. K. Bose, D. P. Sahu, M. S. Manhas, J. Org. Chem, 1981, 46, 1229.
  • [56] J. C. Sheehan, F. J. Guziec, ibid., 1973, 38, 3034.
  • [57] W. L. Parker, M. L. Rathnum, W. Liu, J. Antibiot, 1982, 35, 900.
  • [58] L. D. Arnold, T. H. Kalantar, J. C. Vederas, J. Am. Chem. Soc, 1985, 107, 7105.
  • [59] L. D. Arnold, J. C. Drover, J. C. Vederas, ibid., 1987, 109, 4649.
  • [60] L. D. Arnold, R. G. May, J. C. Vederas, ibid., 1988, 110, 2237.
  • [61] S. V. Pansare, J. C. Vederas, J. Org. Chem, 1989, 54, 2311.
  • [62] G. Dewynter, N. Aouf, M. Criton, J.-L. Montero, Tetrahedron, 1993, 49, 65.
  • [63] G. Dewynter, N. Aouf, Z. Regaina, J. L. Montero, ibid, 1996, 52, 993.
  • [64] G. Dewynter, J.-L. Montero, C. R. Acad. Sei. Paris serie II, 1992, 315, 1675.
  • [65] U. Larsson, R. Carlson, Acta Chem. Scand., 1994, 48, 517.
  • [66] G. A. Snow, Bacteriol. Rev., 1970, 34, 99.
  • [67] P. J. Maurer, M. J. Miller. J. Am. Chem. Soc., 1983, 105, 240.
  • [68] B. Hyrup, P. E. Nielsen, Bioorg. Med. Chem., 1996, 4, 5.
  • [69] G. Lowe, T. Vilaivan, J. Chem. Soc. Perkin Trans. 1, 1997, 547.
  • [70] G. Ceulemans, K. Khan, A. Van Schepdael, P. Herdewijn, Nucleos. Nucleot., 1995, 14, 813.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.