PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enzymy niklowe

Identyfikatory
Warianty tytułu
EN
Nickel enzymes
Języki publikacji
PL
Abstrakty
EN
Nickel is now well recognized as an essential ultra trace element for bacteria and plants, where five distinct types of Ni-containing enzymes have been identified. It is also considered to be essential for animals and humans, however, its role in animal biochemistry is not well defined. The article, containing 10 figures and 201 bibliographic positions, provides a current summary of the properties of known nickel enzymes, with emphasis on structure-function relations. In the beginning the paper reviews occurrence of Ni in environment, and its biological importance. The relevant chemistry of nickel complexes has been shortly reviewed. Nickel enzymes are particulary prominent in the metabolism of anaerobic bacteria. For example, the metabolism of methanogens involves methyl-CoM reductase, nickel hydrogenase, acetyl-CoA synthase, and carbon monoxide dehydrogenase. Important enzyme for many bacteria, fungi, and plants is urease. Urease catalyzes the hydrolysis of urea, to from ammonia and carbamate. It was the first enzyme ever to be crystallized (Summer J.B., J. Biol. Chem., 1926, 69, 435; ibid., 1926, 70, 97). In 1975 Dixon and co-workers discovered that urease contains nickel at the active site (Dixon N.F. et.al., J. Am. Chem. Soc. 1975, 97, 4131). Twenty years later the X-ray crystal structure of the urease from Klebsiella aerogenes has been determined (Jabri E. Et al., Science, 1995, 268, 998). The enzyme is an (abg)3 trimer with each a-subunit having an (ab)8-barrel domain containing a binickel active site. A carbamylated lysine provides an oxygen ligand to each nickel, explaining why carbon dioxide is required for the activation of urease apoenzyme (Park I.S., Hausinger R.P., Science, 1995 , 267, 1156). In the paper the coordination geometry of nickel ions and the structure of active site, together with possible catalytic mechanism, are presented. [NiFe]-hydrogenases catalyze the two electron redox chemistry of H2. Crystallographic data on the hydrogenase from Desulfovibrio gigas were presented (Volbeda et al., J. Am. Chem. Soc., 1996, 118, 12989), giving new information on the structure and mode of action of its H2 activating place. The active centre was found to contain a heterodinuclear active site composed of a Ni centre bridged to an Fe centre by cysteinate ligands, and by oxygenspecies, which is proposed to be signature of the inactive from of the enzyme. The iron atom binds three diatomic ligands which are nonexchangeable triply bonded molecules (probably CO, CN- or NO). Based on the new structure possible modes of hydrogen binding and catalytic action of the active site are discussed. Methyl-coenzyme M reductase (MCR) catalyzes the final stage of the reduction of carbon dioxide to methane in methanogenic bacteria. The terminal step involves prosthetic group, Factor 430 (F-430), which in the resting state is a nickel (II) tetrapyrrole. Studies of F-430 in the enzyme complex suggest a hexacoordinate, octahedral Ni(II) environment, with two oxygen axial ligands. The spectral data of the active from of MCR are characteristic for F-430 in the Ni(I) oxidation state (Goubeaud M. Et al., Eur. J. Biochem. 1997, 243, 110), indicating that methyl-CoM reductase is activated when the enzyme-bound coenzyme F-430 is reduced to the Ni(I) state. The macrocycle can readily accommodate the structural changes that accompany reduction Ni(II) to Ni(I). Carbon monoxide dehydrogenase (CODH) catalyzes the reversible oxidation of CO to CO2, at an active site, called the cluster C, composed of an [4Fe-4S] cube with pentacoordinate Fe (called FCII), linked to a Ni(Hu Z. Et al., J. Am. Chem. Soc., 1996, 118, 830). Besides the enzymes that contain only CODH activity, there are the bifunctional enzymes that contain both CODH and acetyl-CoA synthase (ACS) activity (Ragsdale S. W., Kumar M., Chem. Rev., 1996, 96, 2515). This enzyme catalyzes reaction of CO at two separate Ni-FeS clusters. Oxidation of CO to CO2 is catalyzed by cluster C, while incorporation of CO into acetyl-CoA occurs at cluster A. A model of catalysis is proposed.
Słowa kluczowe
PL
nikiel   enzym  
EN
nickel   enzyme  
Rocznik
Strony
207--241
Opis fizyczny
Bibliogr. 201 poz., schem., wykr.
Twórcy
  • Instytut Chemii Uniwersytetu Opolskiego, ul. Oleska 48, 450951 Opole
Bibliografia
  • [1] D. Ankel-Fuchs, R. K. Thauer, „Nickel in Biology: Nickel as an Essential Trace Ele¬ment”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 93-110, VCH, New York 1988.
  • [2] A. Kabata-Pendias, H. Pendias, Biogeochemia pierwiastków śladowych, Wydawnictwo Naukowe PWN, Warszawa 1993.
  • [3] M. Anke, L. Angelow, M. Glei, M. Müller, H. Illing, Fresenius J. Anal. Chem., 1995, 352, 92.
  • [4] J. R. Dojlid o, Chemia wód powierzchniowych, Wyd. Ekon. i Środ., Białystok 1995.
  • [5] W. Kaim, B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Wiley, New York 1994.
  • [6] T. Norseth, Nickel, [w:] Handbook on the Toxicology of Metals, 2nd ed., s. 462-481, Elsevier, Amsterdam 1986.
  • [7] G. Stangl, M. Kirchgessner, J. Nutrit., 1996, 126, 2466.
  • [8] G. Stangl, M. Kirchgessner, J. Animal Physiol. Animal Nutrit., 1996, 75, 164.
  • [9] S. R. Starnes, J. W. Spears, R. W. Harvey, Biol. Trace Elem. Res., 1984, 6, 403.
  • [10] T. Norseth, „Clinical Effects of Nickel”, [w:] F. W. Sunderman (red.), Nickel in the Human Environment, s. 395-401, IARC Sei. Publ., No. 53, 1984.
  • [11] R. P. Hausinger, Biochemistry of Nickel, Plenum, New York 1993.
  • [12] H. Kozłowski, J. Świątek, W. Bal, „Chemical Bases of Metal Induced Mutagenesis and Carcinogenesis”, [w:] Educ. Adv. Chem., vol. 3, s. 41-60, Wrocław 1996.
  • [13] K. S. Kasprzak, „Effects of Calcium, Magnesium, Zinc, and Iron on Nickel Carcinogenesis: Inhibition versus Enhancement”, [w:] N. D. Hadijliadis (red.), Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment, s. 93-106, Kluwer, Dordrecht 1997.
  • [14] W. Bal, S. Kasprzak, „Modeling the Metal Binding Sites in Core Histones: Interactions of Carcinogenic Ni(II) with the -CAIH- Motif of Histone H3", ibid., s. 107-121.
  • [15] N. T. Christie, Toxicol. Environ. Chem., 1989, 22, 51.
  • [16] N. T. Christie, D. M. Tummolo, N. W. Biggart, E. C. Murphy, Jr., Cell Biol. Toxicol, 1988, 4, 427.
  • [17] Y. W. Lee, C. B. Klein, B. Kargacin, K. Salnikow, J. Kitahara, K. Dowjat, A. Zhitkovich, N. T. Christie, M. Costa, Mol. Cell. Biol., 1995, 15, 2547.
  • [18] C. L. Coyle, E. I. Stiefel, „The Coordination Chemistry of Nickel: An Introducing Survey” [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 1-28.
  • [19] F. A. Cotton, G. Wilkinson, P. L. Gauss, Chemia nieorganiczna. Podstawy, Wydawnictwo Naukowe PWN, Warszawa 1995.
  • [20] W. Bal, M. I. Djuran, D. W. Margerum, E. T. Gray, Jr., M. A. Mazid, R. T. Tom, E. Nieboer, P. J. Saddler, J. Chem. Soc., Chem. Comm., 1994, 1889.
  • [21] D. W. Margerum, S. L. Antiker, ,,Nickel(III) Chemistry and Properties of the Peplide Complexes of Ni(II) and Ni(III)”, [w:] J. R. Lancaster, Jr., The Bioinorganic Chemistry of Nickel, s. 29-52.
  • [22] L. D. Pettit, J. E. Gregor, H. Kozłowski, „Complex Formation Between Metal Ions and Peptides”, [w:] Perspectives on Bioinorganic Chemistry, vol. 1, s. 1-41, JAI 1991.
  • [23] T. Gajda, B. Henry, J.-J. Delpuech, Inorg. Chem., 1995, 34, 2455.
  • [24] H. Siegel, R. B. Martin, Chem. Rev., 1992, 82, 385.
  • [25] R. Cammack, „Catalysis by Nickel in Biological Systems”, [w:] J- Reedijk (red.), Bioinorganic Catalysis, s. 189-226, Dekker, New York 1993.
  • [26] M. A. Halcrow, G. Christou, Chem. Rev., 1994, 94, 2421.
  • [27] J. Dolovich, S. L. Evans, E. Nieboer, Br. J. Ind. Med., 1984, 41, 51.
  • [28] C L. Fu, J. W. Olson, R. J. Maier, Proc. Natl. Acad. Sei. U.S.A., 1995, 92, 2333.
  • [29] H. D. Youn, E. J. Kim, J. H. Roe, Y. C. Hah, S. O. Kang, Biochem. J., 1996, 318, 889.
  • [30] C. Salerno, „The EPR Spectra of Odd-Electron Nickel Ions in Biological Systems: Theory for d1 and d9 Ions”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 53-72.
  • [31] M. K. Eidsness, R. J. Sullivan, R. A. Scott, „Electronic and Molecular Structure of Biological Nickel as Studied by X-ray Absorption Spectroscopy”, ibid., s. 73-92.
  • [32] P. J- Riggs-Gelasco, T. L. Stemmier, J. E. Penner-Hahn, Coord Chem. Rev., 1995, 144, 245.
  • [33] S. Benini, S. Ciurli, H. F. Nolting, S. Mangani, Eur. J. Biochem., 1996, 239, 61.
  • [34] J. B. Summer, J. Biol. Chem., 1926, 69, 435.
  • [35] R. K. Andrews, R. L. Blakely, B. Zerner, Adv. Inorg. Biochem., 1984, 6, 245.
  • [36] H. L. T. Mobley, R. P. Hausinger, Microbiol. Rev., 1989, 53, 85.
  • [37] H. L. T. Mobley, M. D. Island, R. P. Hausinger, ibid., 1995, 59, 451.
  • [38] M. B. C. Moncrief, L. G. Hom, E. Jabri, P. A Karplus, R. P. Hausinger, Protein Sei., 1995, 4, 2234.
  • [39] T. Jahns, U. Schafer, H. Kaltwasser, Microbiol. U. K., 1995, 141, 737.
  • [40] R. M. Stark, J. Greenman, M. R. Millar, Br. J. Biomed. Sei., 1995, 52, 282.
  • [41] C. L. Williams, T. Preston, M. Hossack, C. Slater, K. McColl,FEMS Immunol. Med. Microbiol., 1996, 13, 87.
  • [42] I. Kansau, F. Guillain, J. M. Thiberge, A Labigne, Mol. Microbiol., 1996, 22, 1013.
  • [43] H. L. T. Mobley, Aliment. Pharmacol. Therapeut., 1996, 10, 57.
  • [44] M. J. Blaser, ibid., 1996, 10, 73.
  • [45] M. W. Lubbers, S. B. Rodriguez, N. K. Honey, R. J. Thornton, Can. J. Microbiol., 1996, 42, 132.
  • [46] N. E. Dixon, C. Gazzola, R. L. Blakely, B. Zerner, J. Am. Chem. Soc., 1975, 97, 4731.
  • [47] K. Takishima, T. Suga, G. Mamiya, Eur. J. Biochem., 1988, 175, 151.
  • [48] S. B. Modrooney, R. P. Hausinger, J. Bacteriol., 1990, 172, 5837.
  • [49] N. E. Dixon, C. Gazzola, J. J. Waters, R. L. Blakely, B. Zerner, ibid., 1975, 97, 4730.
  • [50] P. A. Clark, D. E. Wilcox, Inorg. Chem., 1989, 28, 1326.
  • [51] P. A Clark, D. E. Wilcox, R. A. Scott, ibid., 1990, 29, 579.
  • [52] M. G. Finnegan, A. T. Kowal, M. T. Werth, P. A. Clark, D. E. Wilcox, M. K. Johnson, J. Am. Chem. Soc., 1991, 113, 4030.
  • [53] S. Wang, M. H. Lee, R. P. Hausinger, P. A Clark, D. E. Wilcox, P. A. Scott, Inorg. Chem., 1994, 33, 1589.
  • [54] D. E. Wilcox, Chem. Rev., 1996, 96, 2435.
  • [55] N. Strater, N. Lipscomb, T. Klabunde, B. Krebs, Angew. Chemie Int. Ed. Engl., 1996, 35, 2024.
  • [56] M. J. Todd, R. P. Hausinger, J. Biol. Chem., 1987, 262, 5963.
  • [57] M. J. Todd, R. P. Hausinger, ibid., 1989, 264, 15835.
  • [58] M. J. Todd, R. P. Hausinger, ibid., 1991, 266, 10260.
  • [59] M. J. Todd, R. P. Hausinger, ibid., 1991, 266, 24327.
  • [60] M. J. Todd, R. P. Hausinger, ibid., 1992, 267, 20024.
  • [61] M. H. Lee, S. B. Moolroney, M. J. Renner, Y. Markowicz, R. P. Hausinger, J. Bacteriol., 1992, 174, 4324.
  • [62] I.-S. Park, R. P. Hausinger, Science, 1995, 267, 1156.
  • [63] I.-S. Park, M. B. Carr, R. P. Hausinger, Proc. Natl. Acad. Sei. U.S.A., 1994, 91, 3233.
  • [64] I.-S. Park, R. P. Hausinger, J. Bacteriol., 1995, 177, 1947.
  • [65] E. Jabri, M. B. Carr, R. P. Hausinger, P. A. Karplus, Science, 1995, 268, 998.
  • [66] D. K. Wilson F. B. Rudolph, F. A. Quiocho, ibid., 1991, 252, 1278.
  • [67] D. K. Wilson, F. A. Quiocho, Biochemistry, 1993, 32, 1689.
  • [68] M. M. Benning, J. M. Kuo, F. M. Raushel, H. M. Holden, ibid., 1995, 34, 7973.
  • [69] M. B. C. Moncrief, R. P. Hausinger, Adv. Inorg. Biochem., 1996, 18, 151.
  • [70] G. H. Lorimer, M. R. Badger, T. J. Andrews, Biochemistry, 1976, 15, 529.
  • [71] F. C. Hartman, M. R. Harpel, Annu. Rev. Biochem., 1994, 63, 197.
  • [72] J. G. Dong, J. C. Fernandez-Maculet, S. F. Yang, Proc. Natl. Acad. Sei. U.S.A., 1992, 89, 9789.
  • [73] S. J. Lippard, Science, 1995, 268, 996.
  • [74] P. R. Martin, R. P. Hausinger, J. Biol. Chem., 1992, 267, 20024.
  • [75] E. Jabri, P. A. Karplus, Biochemistry, 1996, 35, 10616.
  • [76] M. K. Chan, S. Muklund, A. Kletzin, M. W. W. Adams, D. C. Rees, Science, 1995,267, 1463.
  • [77] A. Volbeda, J. C. Fontecillacamps, M. Frey, Curr. Op. Struct. BioL, 1996, 6, 804.
  • [78] A. J. Stemmier, J. W. Kampf, M. L. Kirk, V. L. Pecoraro, J. Am. Chem. Soc., 1995,117, 6368.
  • [79] S. M. Mukhopadhay, D. Ray, Ind. J. Chem.-Sec. A, 1995, 34, 466.
  • [80] D. Volkmer, A. Horstman, K. Griesar, W. Haase, B. Krebs, Inorg. Chem., 1996, 35, 1132.
  • [81] D. Volkmer, B. Hommerich, K. Griesar, W. Haase, B. Krebs, ibid., 1996, 35, 3792
  • [82] Y. Nakao, C. Mori, W. Mori, T. Sakurai, K. Matsumoto, H. Kimoto, Chem. Lett., 1996, 8, 641.
  • [83] I.-S. Park, L. O. Michel, M. A. Pearson, E. Jabri, P. A. Karplus, S. K. Wang, J. Dong, R. A. Scott, B. P. Koehler, M. K. Johnson, R. P. Hausinger, J. Biol. Chem., 1996, 271, 18632.
  • [84] N. E. Dixon, P. W. Riddles, C. Gazzola, R. L. Blakely, B. Zerner, Can. J. Biochem, 1980, 58, 1335.
  • [85] R. K. Thauer, A. R. Klein, G. C. Hartmann, Chem. Rev., 1996, 96, 3031.
  • [86] S. P. J. Albracht, Biochem. Biophys. Acta, 1994, 1188, 167.
  • [87] C. Zaborosch, M. Koster, E. Bill, K. Schneider, H. G. Schlegel, A. X. Trautweis, Biometals, 1995, 8, 149.
  • [88] R. Cammack, V. M. Fernandez, K. Schneider, „Nickel in Hydrogenases from Sul¬fate-Reducing, Photosynthetic, and Hydrogen-Oxidizing Bacteria”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 167-190.
  • [89] N. R. Bastian, D. A. Wink, L. P. Wackett, D. J. Livingston, L. M. Jordan, J. Fox, W. H. Orme-Johnson, Ch. T. Walsh, „Hydrogenases of Methanobacterium thermoauto- trophicum strain AH”, ibid., s. 167-190.
  • [90] T. Maier, A. Bock, Adv. Inorg. Biochem., 1996, 18, 173.
  • [91] T. Maier, A. Bock, Biochemistry, 1996, 35, 10089.
  • [92] U. Binder, T. Maier, A. Bock, Arch. Microbiol., 1996, 165, 69.
  • [93] D. Zirnigbl, R. Hedderich, R. K. Thauer, FEBS Lett., 1990, 261, 112.
  • [94] K. Ma, D. Zirnigbl, D. Linder, K. O. Stetter, R. K. Thauer, Arch. Microbiol., 1991, 156, 43.
  • [95] E. G. Graf, R. Thauer, FEBS Lett., 1981, 136, 165.
  • [96] I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine, Bioinorganic Chemistry, Univ. Sei. Books, Mill Valley 1994.
  • [97] R. Cammack, D. S. Patil, E. C. Hatchikian, V. M. Fernandez, Biochim. Biophys. Acta, 1987, 912, 98.
  • [98] A. Volbeda, E. Garcin, C. Piras, A. L. de Lacey, V. M. Fernandez, E. C. Hatchikian, M. Frey, J. C. Fontecilla-Camps, J. Am. Chem. Soc., 1996, 118, 12989.
  • [99] K. A. Bagley, E. C Duin, W. Roseboom, S. P. J. Albracht, W. H. Woodruff, Biochemistry, 1995, 34, 5527.
  • [100] V. M. Hernandez, E. C. Hatchikian, R. Cammack, Biochim. Biophys. Acta, 1985,832, 69.
  • [101] B. Guigliarelli, C. More, A Fournel, M. Asso, E. G Hatchikian, R. Williams, R. Cammack, P. Bertrand, Biochemistry, 1995, 34, 4781.
  • [102] T. Kamachi, S. Uno, T. Hirashi, I. Okura, J. Mol. Cat. A - Chem., 1995, 95, 93.
  • [103] N. A. Zorin, M. Medina, M. A. Pusheva, I. N. Gogotov, R. Cammack, FEMS Microbiol. Lett., 1996, 142, 71.
  • [104] J. A. Kovacs, Inorg. Biochem., 1994, 9, 173.
  • [105] A F. Kolo dziej, Prog. Inorg. Chem., 1994, 41, 493.
  • [106] M. J. Maroney, G. J. Colpas, C. Bagyinka, N. Baidya, P. K. Mascharak, J. Am. Chem. Soc., 1991, 113, 3692.
  • [107] A Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey, J. C. Fontecilla-Camps, Nature, 1995, 373, 580.
  • [108] J. C. Fontecilla-Camps, A. Volbeda, M. Frey, Trends Biotechnol., 1996, 14, 417.
  • [109] K. K. Surerus, M. Chen, J. W. Van der Zwaan, F. M. Rusnak, M. Kolk,E. C. Duin, S. P. J. Albrach, E. Munck, Biochemistry, 1994, 33, 4980.
  • [110] T. M. Van der Spek, A.F. Arendsen, R. P. Happe, S.Y. Yun, K. A. Bagley, D. J. Stufkens, W. R. Hagen, S. P. J. Albracht, Eur. J. Biochem., 1996, 237, 629.
  • [111] Z. J. Gu, J. Dong, C. B. Allan, S. B. Choudhury, R. Franco, J. J. G. Moura, J. Legall, A. E. Przybyla, W. Roseboom, S. P. J. Albracht, M. J. Axley, R. A. Scott, M. J. Maroney, J. Am. Chem. Soc., 1996, 118, 11155.
  • [112] D. K. Mills, Y. M. Hsiao, P. J. Farmer, E. V. Atnip, J. H Reibenspies, M. Y. Darensborough, ibid., 1991, 113, 1421.
  • [113] G. J. Colpas, R. O. Day, M. J. Maroney, Inorg. Chem., 1992, 31, 5053.
  • [114] G. Musie, P. J. Farmer, T. Tuntulani, J. H. Reibenspies, M. Y. Darensborough, ibid., 1996, 35, 2176.
  • [115] A. Berkessel, J. W. Bats, M. Huber, W. Haase, T. Neumann, L. Seidel, Chem. Berichte, 1995, 128, 125.
  • [116] M. A. Halcrow, Angew. Chem. Int. Ed. Engl., 1995, 34, 1193.
  • [117] C. A. Marganian, H. Vazir, N. Baidya, M. M. Olmstead, P. K. Mascharak, J. Am. Chem. Soc., 1995, 117, 1584.
  • [118] J. W. Van der Zwaan, S. P. J. Albracht, R. D. F ontijn, C. E. Slater, FEBS Lett., 1985, 179, 271.
  • [119] S. P. J. Albracht, Biochim. Biophys. Acta, 1994, 1188, 167.
  • [120] M. Teixeira, I. Moura, A V. Xavier, J. J. G. Moura, J. LeGall, D. V. Dervartanian, H. D. Peck, Jr., B.-H. Huynh, J. Biol. Chem., 1989, 264, 16435.
  • [121] L. M. Roberts, P. Lindahl, Biochemistry, 1994, 33, 14339.
  • [122] L. M. Roberts, P. Lindahl, J. Am. Chem. Soc., 1995, 117, 2565.
  • [123] M. E. Dervartanian, N. K. Menon, A. E. Przybyla, H. D. Peck, D. V. Dervartanian, Biochem. Biophys. Res. Commun., 1996, 227, 211.
  • [124] M. J. Maroney, M. A Pressler, S. A. Mirza, J. P. Whitehead, R. J. Gurbiel, B. M. Hoffman, Adv. Chem. Ser., 1995, 246, 21.
  • [125] J. J. G. Moura, M. Teixeiera, I. Moura, J. LeGall, „(Ni, Fe) Hydrogenases from Sulfate-Reducing Bacteria: Nickel Catalytic and Regulatory Roles”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 167-190.
  • [126] R. Cammack, Nature, 1995, 373, 556.
  • [127] R. T. Hembre, J. S. McQueen, J. Am. Chem. Soc., 1996, 118, 798.
  • [128] A Coghlan, New Sei., 1996, 2011, 14.
  • [129] F. Dole, M. Medina, C. Moe, R. Cammack, P. Bertrand, B. Guigliarelli, Biochemistry, 1996, 35, 16399.
  • [130] S. Hati, D. Datta, J. Chem. Soc. Dalton Trans., 1995, 1177.
  • [131] M. J. Maroney, C. B. Allan, B. S. Chohan, S. B. Choudhury, Z. J. Gu, ACS Symp. Ser., 1966, 653, 74.
  • [132] L. P. Wackett, J. F. Honek, T. P. Begley, S. L. Shames, E. C. Niederhoffer, R. P. Hausinger, W. H. Orme-Johnson, Ch. T. Walsh, „Methyl-S-Coenzyme-M Reductase: A Nickel-Dependent Enzyme Catalyzing the Terminal Redox Step in Methane Biogenesis”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 249-274.
  • [133] U. Deppenmeier, V. Muller, G. Gottschalk, Arch. Microbiol., 1996, 165, 149.
  • [134] F. D. Sauer, B. A. Blackwell, J. K, G. Kramer, B. J. Marsden, Biochemistry, 1990,29, 7593.
  • [135] S. Rospert, D. Linder, J. Ellermann, R. K. Thauer, Eur. J. Biochem., 1990, 194, 871.
  • [136] J.Telser, Y. C Fann, M. W. Renner, J. Fajer, S. K. Wang, H. Zhang, R. A. Scott, B. M. Hoffmann, J. Am. Chem. Soc., 1997, 119, 733.
  • [137] A Pfalz, „Structure and Properties of Coenzyme F430”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 249-274.
  • [138] M. W. Renner, L. R. Furenlid, K. M. Barkigia, A. Forman, H.-K. Shim, D. J. Simpson, K. M. Smith, J. Fajer, J. Am. Chem. Soc., 1991, 113, 6891.
  • [139] A. K. Shiemke, R. A. Scott, J. A. Shelnutt, ibid., 1988, 110, 1645.
  • [140] M. K. Eidsness, R. J. Sullivan, J. R. Schwartz, P. L. Hartzell, R. S. Wolfe, A.-M. Flank, S. P. Cramer, R. A. Scott, ibid., 1986, 108, 3120.
  • [141] H. C. Friedmann, A. Klein, R. K. Thauer, FEMS Microbiol. Rev., 1990, 87, 339.
  • [142] Ch. Hollinger, A. J. Pierik, E. J. Reijerse, W. R. Hagen, J. .Am. Chem. Soc., 1993,115, 5651.
  • [143] M. Goubeaud, G. Schreiner, R. K. Thauer, Eur. J. Biochem., 1997, 243, 110.
  • [144] C. M. Drain, D. B. Sable, B. B. Corden, Inorg. Chem., 1990, 29, 1428.
  • [145] A. Berkessel, Bioorg. Chem., 1991, 19, 101.
  • [146] Z. Zhang, J. L. Petersen, A M. Stolzenberg, Inorg. Chem., 1996, 35, 4649.
  • [147] A. Berkessel, M. Bolte, T. Neumann, L. Seidel, Chem. Berichte, 1996, 129, 1183.
  • [148] S. P. J. Albracht, D. Ankel-Fuchs, R. Boecher, J. Ellermann, J. Moll, J. W. Van der Zwaan, R. K. Thauer, Biochim. Biophys. Acta, 1988, 86, 955.
  • [149] P. A. Lindahl, E. Münck, S. W. Ragsdale, J. Biol. Chem., 1990, 265, 3873.
  • [150] M. Blaut, A van Leeuwenhoek Int. J. Gen. Mol. Microbiol., 1994, 66, 187.
  • [151] B. Santiago, R. Meyer, FEMS Microbiol. Lett., 1996, 136, 157.
  • [152] J. G. Ferry, Annu. Rev. Microbiol., 1995, 49, 305.
  • [153] G. Diekert, „Carbon Monoxide Dehydrogenase of Acetogens”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 299-310.
  • [154] M. Kumar, S. W. Ragsdale, J. Inorg. Biochem., 1993, 51, 233.
  • [155] S. W. Ragsdale, M. Kumar, Chem. Rev., 1996, 96, 2515.
  • [156] S. W. Ragsdale, H. G. Wood, T. A. Morton, L. G. Ljungdahl, D. V. DerVartanian, „Nickel in CO Dehydrogenase”, [w:] J. R. Lancaster, Jr. (red.), The Bioinorganic Chemistry of Nickel, s. 299-310.
  • [157] W. Shin, M. E. Anderson, P. A. Lindahl, J. Am. Chem. Soc., 1993, 115, 5522.
  • [158] J. Q. Xia, J. F. Sinclair, T. O. Baldwin, P. A. Lindahl, Biochemistry, 1996, 35, 1965.
  • [159] R. I. L. Eggen, R. Vankranenburg, A. J. M. Vriesema, A. C. M. Geerling, J. Biol. Chem., 1996, 271, 14256.
  • [160] S. W. Ragsdale, L. G. Ljungdahl, D. V. DerVartanian, J. Bacteriol., 1983, 155, 1224.
  • [161] S. W. Ragsdale, J. E. Clark, L. G. Ljungdahl, L L Lundie, H. L. Drake, J. Biol. Chem., 1983, 258, 2364.
  • [162] J. Q. Xia, P. A Lindahl, Biochemistry, 1995, 34, 6037.
  • [163] J. Q. Xia, J. Dong, S. K. Wang, R. A. Scott, P. A. Lindahl, J. Am. Chem. Soc., 1995,117, 7065.
  • [164] J. Q. Xia, P. A. Lindahl, ibid., 1996, 118, 483.
  • [1651 K. C. Terlesky, M. J. K. Nelson, J. G. Ferry, J. Bacteriol., 1986, 168, 1053.
  • [166] J. A. Krzycki, L. E. Mortenson, R. C. Prince, J. BioL Chem., 1989, 264, 7217.
  • [167] D. R. Abbanat, J. G. Ferry, Proc. Natl. Acad. Sei. U.S.A, 1991, 88, 3272.
  • [168] M. S. M. Jetten, W. R. Hagen, A. J. Pierik, A. J. M. Stams, A J. B. Zehnder, Eur. J. Biochem., 1991, 195, 385.
  • [169] J. A. Maupin-Furlow, J. G. Ferry, J. Bacteriol., 1996, 178, 340.
  • [170] J. A. Krzycki, J. G. Zeikus, ibid., 1984, 158, 231.
  • [171] D. A. Graham, E. Demoll, J. Biol. Chem., 1996, 271, 8352.
  • [172] R. I. L. Eggen, A. C. M. Geerling, M. S. M. Jetten, W. M. de Vos, ibid., 1991,266,6883.
  • [173] R. L. Kerby, P. W. Ludden, G. P. Roberts, J. Bacteriol., 1995, 177, 2241.
  • [174] D. Bonam, P. W. Ludden, J. Biol. Chem., 1987, 262, 2980.
  • [175] Z. Hu, N. J. Spangler, M. E. Anderson, J. Xia, P. W. Ludden, P. A Lindahl, E. Munck, J. Am. Chem. Soc., 1996, 118, 830.
  • [176] S. A. Ensign, M. J. Campbell, P. W. Ludden, Biochemistry, 1990, 29, 2162.
  • [177] M. Kumar, W.-P. Lu, L. Liu, S. W. Ragsdale, J. Am. Chem. Soc., 1993, 115, 11646.
  • [178] M. E. Anderson, V. J. DeRose, B. M. Hoffman, P. A Lindahl, J. Inorg. Biochem., 1993, 51, Abstr. B149.
  • [179] W. P. Lu, P. E. Jablonski, M. Rasche, J. G. Ferry, S. W. Ragsdale, J. Biol. Chem., 1994, 269, 9736.
  • [180] M. E. Anderson, P. A Lindahl, Biochemistry, 1996, 35, 8371.
  • [181] G. O. Tan, S. A. Ensign, S. Ciurli, M. J. Scott, B. Hedman, R. H. Holm, P. W. Ludden, Z. R. Korszun, P. J. Stephens, K. O. Hodgson, Proc. Natl. Acad. Sei. U.S.A., 1992, 89, 4427.
  • [182] Z. G. Hu, N. J. Spangier, M. E. Anderson, J. Q. Xia, P. W. Ludden, P. A. Lindahl, E. Munck, J. Am. Chem. Soc., 1996, 118, 830.
  • [183] D. Qui, M. Kumar, S. W. Ragsdale, T. G. Spiro, ibid., 1996, 118, 10429.
  • [184] S. W. Ragsdale, H. G. Wood, W. E. Antholine, Proc. NatL Acad. Sei. U.S.A., 1985,82, 6811.
  • [185] K. C. Terlesky, M. J. Barber, D. J. Aceti, J. G. Ferry, J. Biol. Chem., 1987,262,15392.
  • [186] C. Fan, C. M. Gorst, S. W. Ragsdale, B. M. Hoffman, Biochemistry, 1991, 30, 431.
  • [187] C. M. Gorst, S. W. Ragsdale, J. Biol. Chem., 1991, 266, 20687.
  • [188] M. Kumar, S. W. Ragsdale, J. Am. Chem. Soc., 1992, 114, 8713.
  • [189] D. Qui, M. Kumar, S. W. Ragsdale, T. G. Spiro, Science, 1994, 264, 817.
  • [190] D. Qiu, M. Kumar, S. W. Ragsdale, T. G. Spiro, J. Am. Chem. Soc., 1995, 117, 2653.
  • [191] S. Menon, S. W. Ragsdale, Biochemistry, 1996, 35, 12119.
  • [192] D. A. Graham, E. Demoll ibid., 1995, 34, 4617.
  • [193] W. Shin, P. A. Lindahl, ibid., 1992, 31, 12870.
  • [194] M. Kumar, D. Qiu, T. G. Spiro. S. W. Ragsdale, Science, 1995, 270, 628.
  • [195] J. A Kovacs, S. C. Shoner, J. J. Ellison, ibid., 1995, 270, 587.
  • [196] W. P. Lu, S. W. Ragsdale, J. Biol. Chem., 1991, 266, 3554.
  • [197] G. C. Tucci, R. H. Holm, J. Am. Chem. Soc., 1995, 117, 6489.
  • [198] S. W. Ragsdale, H. G. Wood, J. Biol. Chem., 1985, 260, 3970.
  • [199] T. Shanmugasundaram, G. K. Kumar, H. G. Wood, Biochemistry, 1988, 27, 6499.
  • [200] F. Osterloh, W. Saak, D. Haase, S. Pohl, J. Chem. Soc., Chem. Commun, 1996, 777.
  • [201] Z. Lu, R. H. Crabtree, J. Am. Chem. Soc., 1995, 117, 3994.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.