PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ład w bezładzie, czyli kompleksy jonów metali przejściowych w szkłach i żelach tlenkowych

Identyfikatory
Warianty tytułu
EN
Order in disorder or complexes of transition metal ions in oxide glasses and gels
Języki publikacji
PL
Abstrakty
EN
The most basic difference between crystalline and non-crystalline solids is that a long range order (LORO) in the distribution of atoms (ions) or molecules exists only in crystalline materials [1]. This is indicated by diffraction patterns: the ideal crystal (the first extreme case) shows reflectants whose location and intensity obey three Laue conditions. The second extreme case is an ideally random structure. Scattering of radiation is impossible in the case of an ideally homogenous medium. Any real substance, including non-crystalline materials is inhomogenous regardless of its form or scale. Thus glasses can be thought of as assemblies of microcrystals (i.e. microcrystallites or paracrystals). Strain introduced due to lattice mismatch at grain boundaries, the presence of a disordered interfacial or matrix region, and defects such as dislocation, or stacking faults can be assumed to give rise to departures from periodicity at distances smaller than the average grain size [10]. In this sense glasses are interesting in the supramolecular science because they are intermediate objects in the way from random to organized matter [5]. The object of this article are such amorphous materials as inorganic oxide glasses with structural groups YO4, where Y = Si, P, and organically modified silicate gels. Among the studied glasses are ones of the type : R2O-SiO2 and R2O-Al2O3-SiO2, where R represents alkali atom (Li to Cs) [23, 25, 27], as well as M(II)O-P2O5, where M(II) is an alkaline earth atom (Mg to Ba) [28, 29, 32, 33]. Undoped glasses and those doped with copper (II) ions were investigated. These metal ions have played the role of probes. All the vitreous systems are classified according to their theoretical optical basicity [lambda] cal proposed by Duffy and Ingram [34]. Thanks to this method one can methodically observe and sensibly interpret changes of real measures of basicity as molar refractivity of oxide ions Ro (see Figs 9 and 10a), the so-called Imagawa's basicity (Fig.10b) and other physical and chemical properties of oxide glasses (Fig.11). The studied glasses are also classified according to their bond nature (Fig. 6)., taking into account their proximity to the onset of metallization [4]. Attention is also focused on the mixed alkali effect [22, 24]. A full understanding of the properties of colloids calls upon a wide range of physical and chemical ideas, while the multitude of colloidal systems presented to us in nature, and familiar in modern society, exhibits a daunting complexity. On the experimental side there is an ever-increasing emphasis on the application of modern physical techniques to colloidal problems. Colloid science is thus a truly interdisciplinary subject [3]. In the case of the xerogels there are described Cu(II) complexes existing on surface and in interior of the material [59-63]. Moreover, silica xerogels with immobilized supramolecular ligands show intensive luminescence (Fig. 17) which is effectively quenched by Cu(II) ions [64].
Rocznik
Strony
57--85
Opis fizyczny
wykr., bibliogr. 65 poz.
Twórcy
  • Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18 80-952 Gdańsk
  • Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18 80-952 Gdańsk
Bibliografia
  • [1] J.-M. Lehn, Topics in Supramolecular Chemistry, [w:] Crystallography of Supramolecular Compounds, G. Tsoucaris, J. L. Atwood, J. Lipkowski (red.), Kluwer Academic Publishers, Dordrecht 1996, s. 455-457.
  • [2] D. R. Secrit, J. D. Mackenzie, [w:] Modern Aspects of the Vitreous State, J. D. Mackenzie (red.), Butterworths, London 1964, tom. 3.
  • [3] D. H. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, London 1992, rozdz. 1.
  • [4] C. J. Brinker, G. Scherer, Sol-Cel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston 1990.
  • [5] J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim 1995, s. 142 174.
  • [6] S. R. Ovshinsky, D. Adler, Contemp. Phys. 1978, 19, 109.
  • [7] P. H. Gaskell, J. de Physiąue 1982, 43, C 9-101.
  • [8] R. J. Araujo, J. Non-Cryst. Solids 1983, 55, 257.
  • [9] K. Kuehne, Werkstoff Glas, Akademie-Verlag, Berlin 1976, rozdz. 2.
  • [10] G. E. Scherer, Glass Formation and Relaxation, [w:] Materials Science and Technology, A Comprehensive Treatment, R. W. Cahn, P. Haasen, E. J. Kramer (red.), VCH, Weinheim 1991, tom 9, rozdz. 3.
  • [11] D. Turnbull, Contemp. Phys. 1969, 10, 473.
  • [12] P. H. Gaskell, Models for the Structure of Amorphous Solids, [w:] Materials Science and Technology. A Comprehensive Treatment, R. W. Cahn, P. Haasen, E. J. Kramer (red.), VCH, Weinheim 1991, tom 9, rozdz. 4.
  • [13] J. C. Phillips, Phys. Today, Febr. 1982, 1.
  • [14] N. F. Mott, Advan. Phys. 1967, 16, 49.
  • [15] W. H. Zachariasen, J. Am. Chem. Soc. 1932, 54, 3841.
  • [16] B. F. Warren, H. Kruter, O. Morningstar, J. Amer. Ceram. Soc. 1936, 19, 207.
  • [17] J. C. Phillips, [w:] Solid State Physics, H. Ehrenreich, F. Seitz, D. Turnbull (red.), Academic Press, New York 1982, tom 37, s. 93.
  • [18] J. C. Phillips, Phys. Stat. Sol. (b) 1980, 101, 473.
  • [19] J. R. Tessman, A. H. Kahn, W. Shockley, Phys. Rev. 1953, 92, 890.
  • [20] W. Vogel, Silikattechn. 1958, 9, 323.
  • [21] W. Vogel, Glaschemie, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig 1979, rozdz. 6 i 7.
  • [22] A. Klonkowski, J. Non-Cryst. Solids 1985, 72, 117.
  • [23] A. Klonkowski, Phys. Chem. Glasses 1983, 24, 166.
  • [24] A. Klonkowski, G. H. Frischat, T. Richter, Phys. Chem. Glasses 1983, 24, 47.
  • [25] G. H. Frischat, T. Richter, A. Klonkowski, Glastechn. Ber. 1983, 56K, 560.
  • [26] A. Klonkowski, T. Richter, G. H. Frischat, Abstracts, XVI Int. Congress on Glass, New Delhi, Indian Ceramic Society 1986, 264.
  • [27] A. Klonkowski, J. Non-Cryst. Solids 1983, 57, 339.
  • [28] A. Klonkowski, Phys. Chem. Glasses 1981, 22, 163.
  • [29] A. Klonkowski, ibid., 1981, 22, 170.
  • [30] O. Gzowski, A. Klonkowski, W. Lizak, I. Gryczyński, J. Non-Cryst. Solids 1978, 28, 167.
  • [31] A. Klonkowski, I. Gryczynski, ibid., 1981, 44, 415.
  • [32] A. Klonkowski, Phys. Chem. Glasses 1985, 26, 11.
  • [33] A. Klonkowski, ibid., 1985, 26, 31.
  • [34] J. A. Duffy, M. D. Ingram, J. Aoń-Cryst. Solids 1976, 21, 373.
  • [35] J. A. Duffy, M. D. Ingram, J. Inorg. Nucl. Chem. 1975, 37, 1203.
  • [36] A. Klonkowski, Zcsz Nauk. P. Gdan. 1987, Chem. XXIX, 3 (praca habilitacyjna).
  • [37] H. Imagawa, Phys. Stat. Sol. 1968, 30, 469.
  • [38] J. Taue, [w:] Optical Properties of Solids, F. Abeles (red.), North Holland, Amsterdam 1972, 277.
  • [39] J. A. Duffy, J. Solid St. Chem. 1986, 62, 145.
  • [40] A. Kłonkowski, Wlad. Chem. 1991, 45, 47.
  • [41] A. Kłonkowski, J. Non-Cryst. Solids 1987, 95/96, 381.
  • [42] C. A. Angell, J. Am. Ceram. Soc. 1968, 51, 125.
  • [43] P. Gray, L. C. Klein, J. Non-Cryst. Solids 1984, 68, 75.
  • [44] M. D. Ingram, J. A. Duffy, J. Am. Ceram. Soc. 1970, 53, 317.
  • [45] T. M. DUNN, D. D. McClure, R. G. W. Pearson, Some Aspects of the Vitreous State, Harper and Row, New York 1965, 77-95.
  • [46] M. J. Weber, J. Non-Cryst. Solids 1985, 73, 351.
  • [47] J. Gazo, J. B. Bersuker, J. Garaj, M. Kabesova, J. Kohout, H. Langfelderova, M. Melnik, M. Serator, F. Valach, Coord. Chem. Rev. 1976, 19, 253.
  • [48] J. Wong, C. A. Angell, Appl. Spectr. Rev. 1971, 4, 200.
  • [49] J. Wong, C. A. Angell, Glass. Structure and Spectroscopy, Dekker, New York 1976, rozdz. 6 i 9.
  • [50] W. Libus, S. K. Hoffmann, M. Kluczkowski, H. Twardowska, Inorg. Chem. 1980, 19, 1625.
  • [51] A. Carrington, C. K. Jorgenson, Mol. Phys. 1961, 4, 395.
  • [52] A. H. Maki, B. R. McGarvey, J. Chem. Phys. 1958, 29, 31.
  • [53] D. Kivelson, R. Neiman, ibid., 1961, 35, 149.
  • [54] A. Kłonkowski, Phys. Chem. Glasses 1985, 26, 11.
  • [55] A. Kłonkowski, Postępy Fiz. 1982, 33, 3.
  • [56] G. N. Greaves, Phil. Mag. 1989, B60, 793.
  • [57] L. L. Hench, J. K. West, Chem. Rev., 1990, 90, 33.
  • [58] H. Schmidt, B. Seiferling, [w:] Better Ceramics Through Chemistry II, Mater. Res. Soc., Pittsburgh, PA 1986, 739.
  • [59] A. M. Kłonkowski, T. Widernik, B. Grobelna, Mol. Engn. 1995, 5, 381.
  • [60] A. M. Kłonkowski, C. W. Schlaepfer, J. Non-Cryst. Solids 1992, 149, 189.
  • [61] A. M. Kłonkowski, K. Koehler, T. Widernik, B. Grobelna, J. Mater. Chem. 1996, 6, 579.
  • [62] A. M. Klonkowski, K. Koehler, C. W. Schlaepfer, ibid., 1993, 3, 105.
  • [63] A. M. Kłonkowski, C. W. Schlaepfer, J. Non-Cryst. Solids 1991, 129, 101.
  • [64] A. M. Klonkowski, K. Kledzik, T. Ossowski, A. Jankowska-Frydel, J. Mater. Chem., w druku.
  • [65] C. H L. Goodman, Glass Technol. 1987, 28, 19.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.