PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface NMR survey on Hansbreen Glacier, Hornsund, SW Spitsbergen (Norway)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glaciers are widely spread on polar and sub-polar regions but also on middle latitude mountains, where cold-dry type glaciers, polythermal glaciers and temperate-wet glaciers are respectively present. Polythermal glaciers have a cold-ice layer (temperature below the pressure melting point) overriding a temperate-ice layer. Nineteen magneticc resonance soundings were done following a 3 Kmprofile on Hansbreen front. Resistivity on the glacier surface, magnetic susceptibility of rocks, electromagnetic noise and total earth's magnetic field measurements confirm that the MRS survey took place in the best conditions. MRS data show different signals amplitudes at the Larmor frequency according to the loop dimension. In a very high electrical resistive context (greater than 2 Mega Ohms meter for glacier ice) the surveyed depth is directly related to the loop area. For small loops (30msquare loop) amplitudes around 50 nV are common as well as some decay time (T*2) above 300 ms. Enlarging the loop size (60 m square loop) it is possible to observe a decrease of the signal amplitude at the Larmor frequency (E0 less than 20 nV) but also the time decay (100 ms greater than =T*2 greater than 40 ms). Increasing loop sizes (90 and 120msquare loops), a slight increase in amplitude at the Larmor frequency, close to 30 nV, is observed with very high time decays (T*2 greater than 500 ms). Ground Penetrating Radar surveys were carried out in Hansbreen at the same location as theMRSsurveyed zone. Available GPR data show a water content of 2,5% on the cold-ice layer (the first 35 m depth) and 2% of water content on the temperate- ice layer but a 4%of water content can also be detected. Both geophysical methods are not convergent because some water content on ice has too short relaxation times being undetectable with conventionalMRSdevices. In that sense the low T*2 time decays data from large MRS loops elucidates that at the temperate-ice layer water flows by seepage through veins and microfractures at a very low rate toward the glacier bottom and a large amount of free water is close to the cold/temperate transition surface. In the cold-ice layer large T*2 time decays are common because water flows through fissures or karstic like conduits. In summary, combining the MRS and GPR techniques gives glaciologists a powerful toolkit to elucidate water flow-paths on glaciers, supercooled meltwater content and subglacial water or aquifers.
Czasopismo
Rocznik
Tom
Strony
57--74
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
Bibliografia
  • Behroozmand A., Auken E., Fiandaca G. & Christiansen A.V., 2012. Improvement inMRSparameter estimation by joint and lateral constrained inversion of MRS and TEM data. Geophysics 77(4): WB191-WB200.
  • Benn D., Gulley J., Luckman A., Adamek A. & Glowaki P., 2009. Englacial drainage systems formed by hydrologically driven crevasse propagation. Journal of Glaciology 55(191): 513–523.
  • Bennett M.R. & Glasser N.F., 2009. Glacial Geology. 2nd ed. Willey-Blackwell, Singapore. Bernard J., 2007. Instruments and field work to measure a Magnetic Resonance Sounding. Boletin Geologico y Minero 118(3): 459–472.
  • Hertrich M. & Walbrecker J., 2008. The potential of surface-NMR to image water in permafrost and glacier ice. Geophysical Research Abstracts, V10, SRef-ID: 1607–7962/gra/EGU2008-A–06663.
  • Hertrich M., 2008. Imagining of groundwater with nuclear magnetic resonance. Nuclear Magnetic Resonance Spectroscopy 53: 227–248.
  • Jania J., Mochnacki D. & Gadek B. 1996. The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard. Polar Research 15(1): 53–66.
  • Kostrzewski A. & Zwolinski Zb. (eds.), 2007. Geodiversity of polar landforms. Landform Analysis 5: 1–220.
  • Legchenko A. & Shushakov O.A., 1998. Inversion of surface NMR data. Geophysics 63(1): 75–84.
  • Legchenko A. 2007. MRS measurements and inversion in presence of EM noise. Boletin Geologico y Minero 118(3): 489–508.
  • Menzies J., 1995a. The dynamics of ice flow. In: J.Menzies (ed.), Modern glacial environments, Butterworth-Heinemann Ltd, Oxford, 1: 139–196.
  • Menzies J., 1995b. Hydrology of glaciers. In: J.Menzies (ed.), Modern glacial environments, Butterworth-Heinemann Ltd, Oxford, 1: 197–239.
  • Moore J.C., Palli A., Ludwig F., Blatter H., Jania J., Gadek B., Glowacki P., Mochnacki D. & Isaksson E., 1999. High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground-penetrating radar. Journal of Glaciology 45(151): 524–532.
  • Oerlemans J., Jania J.& Kolondra L., 2011. Application of a minimal glacier model to Hansbreen, Svalbard. The Cryosphere 5: 1–11.
  • Palli A. 2003. Polythermal glaciers studies in Svalbard determined by ground-penetrating radar. PhD thesis. Department of Geosciences, Oulu University.
  • Petterson R. 2004. Dynamics of the cold surface layer of polythermal Storglaciaren, Sweden. PhD thesis. Department of Physical Geography and Quaternary Geology, Stockholm University.
  • Plata J.L. & Rubio F.M., 2007. Basic theory of the Magnetic Resonance Sounding: Method. Boletin Geologico y Minero 118(3): 441–458.
  • Walbrecker J., Hertrich M. & van der Kruk J., 2008. Water content determination on the Rhone glacier (Valais, Switzerland) using sample-scale-NMR, surface-NMR and GPR methods. DGG-Jahrestagung, Freiberg.
  • Yaramanci U. & Hertrich M., 2007. Inversion of Magnetic Resonance Sounding data. Boletin Geologico y Minero 118(3): 473–488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0026-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.