PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Searching for regularities of slope modelling by extreme events (diversity of rainfall intensity – duration and physical properties of the substrate)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last decades, research into slope transformation, especially transformation caused by debris flows and shallow landslides has set great store by the establishment of thresholds based on the relation of mean rainfall intensity to its duration. The present author is no exception. In the 1970s, after examining that relationship he distinguished three main types of extreme rainfalls (heavy downpours, continuous rains and rainy seasons). In this paper, while noting the great diversity of extreme events in space and time, he stresses the function of extremely high rainfall intensity in triggering off the slope transformation. Taking into account the role of such parameters as the effect of substrate, relief and land use on the distribution of precipitation into overland flow, subsurface runoff, and ground water storage, he proposes several models that connect geomorphic processes with different types of extreme rainfalls. In critical comments to the establishment of thresholds based only on mean daily rainfall and mean rainfall intensity he follow the opinion on limitation of factors to standart climatic and hydrologic and hydrologic data presented earlier by T. Dunne and A. Freeze. This analysis also notes the role of clusterings of events in various climatic zones and stresses the need of continuous monitoring of rainfall intensity and any other aspects of water circulation on slopes. All of those elements are indispensable for the construction of a more diversified pattern of thresholds.
Czasopismo
Rocznik
Tom
Strony
27--34
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • Department of Geoenviromental Research, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Poland, starkel@zg.pan.krakow.pl
Bibliografia
  • Aleotti P., 2004. A warning system for rainfall induced shallow failures. Engineering Geology 73: 247–265.
  • Ballantyne C.K., 2002. A general model of paraglacial landscape response. The Holocene, 12: 371–376.
  • Caine N., 1980. The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler A, 62: 23–27.
  • Cebulak E., Limanówka D., Malota A., Niedbała J., Pyrc R. & Starkel L., 2008. Przebieg i skutki ulewy w dorzeczu górnego Sanu w dniu 26 lipca 2005 roku. Materiały badawcze IMGW, Meteorologia 40: 1–56.
  • Crosta G.B., 1998. Regionalization rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology 35(2–3): 131–145.
  • Crozier M.J., 1996. The climate-landslide couple: a southern hemisphere perspective. Paleoclimate Research 19: 329–350.
  • Crozier M.J., 1999. Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surface Processes and Landforms 24:825–833.
  • Douglas I., 1976. Lithology, Landforms and Climate. In: E. Derbyshire (ed.), Geomorphology and Climate. J. Wiley, London: 345–366.
  • Dunne T., 1978. Field studies of hillslope flow processes. In: M.J. Kirby (ed.), Hillslope Hydrology Wiley, London: 227–293.
  • Dunne T., Moore T.R., Taylor C.H., 1975. Recognition and prediction of runoff producing zones in humid regions. Hydrological Sciences Bulletin: 305–327.
  • Ellen S.D. & Wieczorek G.F. (eds.), 1988. Landslides, floods and marine effects of the storm of January 3–5, 1982 in the San Francisco Bay Region, California. US Geological Survey Prof. Papers 1434.
  • Freeze R.A., 1972. Role of subsurface flow in generating surface runoff, 2. Upstream source area. Water Resources Research 8, 5: 1272.
  • Froehlich W., 1998. Transport rumowiska i erozja koryt potoków beskidzkich podczas powodzi w lipcu 1997. Konferencja Naukowa, Oddział PAN, Kraków: 133–144.
  • Froehlich W. & Starkel L., 1987. Normal and extreme monsoon rains – their role in the shaping of the Darjeeling Himalaya. Studia Geomorphologica Carpatho-Balcanica 21: 129–160.
  • Gil E., 1997. Meteorological and hydrological conditions of landslides, Polish Flysch Carpathians. Studia Geomorphologica Cartpatho-Balcanica 31: 143–158.
  • Gil E., 1998. Spływ wody i procesy geomorfologiczne w zlewniach fliszowych podczas gwałtownej ulewy w Szymbarku w dniu 7 czerwca 1985 roku. Dokumentacja Geograficzna, 11: 85–107.
  • Gil E. & Słupik J., 1972a. The influence of plant cover and land use on the surface run-off and wash-down during heavy rain. Studia Geomorphologica Carpatho-Balcanica 6: 181–190.
  • Gil E. & Słupik J., 1972b. Hydroclimatic conditions of slope wash during snowmelt in the Flysch Carpathians. Symposium International de Geomorphologie, University de Liege, 67: 75–90.
  • Gil E.&Starkel L., 1979. Long-term extreme rainfall and their role in the modelling of flysch slopes.Studia Geomorphologica Carpatho-Balcanica 13: 207–220.
  • Glade T., 1997. The temporal and spatial occurrence of rainstorm-triggered landslide events in New Zealand. School of Earth Science, Victoria University of Wellington: 380 pp.
  • Glade T., Anderson M. & Crozier M.J. (eds.), 2005.Landslide hazards and risk. J. Wiley: 802 pp.
  • Gorczyca E., 2004. Przekształcanie stoków fliszowych przez procesy masowe podczas katastrofalnych opadów (dorzecze Łososiny). Wyd. Uniwersytetu Jagiellońskiego, Kraków: 1–101.
  • Govi M.&Sorzana P.F., 1980. Landslide susceptibility as function of critical rainfall amount in Piedmont basin (N–W Italy). Studia Geomorphologica Carpatho-Balcanica 14: 43–60.
  • Grin A.M., 1970. Results of stationary studies of run-off and slope wash (in Russian). In: Present exogenic geomorphic processes, Moskva: 89–95.
  • Guzetti F., 2000. Landslide fatalities and evolution of landslide risk in Italy. Engineering Geology, 58: 89–107.
  • Guzetti F., Peruccacci S., Rossi M. & Stark C.P., 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5: 3–17.
  • Hack J.T.&Goodlett J.C, 1960. Geomophology and forest ecology of mountain region in the central Appalachians. U.S. Geological Survey Prof. Paper 347.
  • Harvey A.M., 2002. Effective timescales of coupling within fluvial systems. Geomorphology 44(3–4): 175–201.
  • Innes J.L., 1983. Debris flows. Progress in Physical Geography 7: 469–501.
  • Jacob M. & Hunger O. (eds.), 2005. Debris flows, hazards and related phenomena. Springer, Berlin.
  • Kotarba A., 1992. Natural environment and landform dynamics of the Tatra Mountains. Mountain Research and Development 12(2): 105–129.
  • Kotarba A., 1999. Geomorphic effects of catastrophic summer flood in the Polish Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica 33: 101–113.
  • Passuto A. & Silvano S., 1998. Role of antecedent rainfalls for shallow landslides. Environmental Geology: 52–53.
  • Ploy de J., 1972. A quantitative comparison between rainfall erosion capacity in a tropical and a middle-latitude region. Geogr. Polonica 23: 141–150.
  • Rączkowski W. & Mrozek T., 2002. Activating of landsliding in the Polish Flysch Carpathians by the end of 20-th century. Studia Geomorphologica Carpatho-Balcanica 36: 91–101.
  • Rodzik J., Janicki G., Zagórski P. & Zgłobicki W., 1998. Deszcze nawalne na Wyżynie Lubelskiej i ich wpływ na rzeźbę obszarów lessowych. Dokumentacja Geograficzna IGiPZ PAN 11: 45–68.
  • Rückenmann Z.&Zimmermann M., 1993. The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8: 175–189.
  • Selby M.J., 1974. Dominant geomorphic events in landform evolution. Bulletin of International Association of Engineering Geology 9: 85–89.
  • Słupik J., 1981. Rola stoku w kształtowaniu odpływu w Karpatach fliszowych (Sum. Role of slope in the formation of runoff in the flysch Carpathians). Prace Geograficzne IGiPZ PAN 142: 1–89.
  • Soja R.&Starkel L., 2007. Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphological impacts. Geomorphology 84: 170–180.
  • Starkel L., 2011. Złożoność czasowa i przestrzenna opadów ekstremalnych – ich efekty geomorfologiczne i drogi przeciwdziałania. Landfrom Analysis 15: 65–80.
  • Starkel L., 1972. The role of catastrophic rainfall in the shaping of the relief of the lower Himalaya (Darjeeling Hills). Geographia Polonica 21: 103–160.
  • Starkel L., 1976. The role of extreme (catastrophic) meteorological events in contemporary evolution of slopes. In: E. Derbyshire (ed.), Geomorphology and Climate, Wiley, Chichester: 203–246.
  • Starkel L., 2006. Geomorphic hazards in the Polish Flysch Carpathians. Studia Geomorphologica Carpatho-Balcanica 40: 7–19.
  • Starkel L. & Sarkar S., 2002. Different frequency of thresholds rainfalls transforming the margin ofSikkimese and Bhutanese Himalaya. Studia Geomorphologica Carpatho-Balcanica 36: 51–67.
  • Starkel L., Sarkar S., Soja R. & Prokop R., 2008. Present-day evolution of the Sikkimese-Bhutanese Himalayan Piedmont. Prace Geograficzne IgiPZ PAN.
  • Starkel L. and Singh S. (eds.), 2004, Rainfall, runoff and soil erosion in the globally extreme humid area Cherrapunji region, India. Prace Geograficzne IGiPZ PAN 191: 110 pp.
  • Ziętara T., 1968. Rola gwałtownych ulew i powodzi w modelowaniu rzeźby Beskidów (Sum. Role of extreme rainfall and floods in the modelling of relief of the Beskidy Mts). Prace Geograficzne IG PAN, 60.
  • Ziętara T., 2002. Rola gwałtownych ulew i powodzi w modelowaniu rzeźby terenu oraz niszczeniu infrastruktury osadniczej w górnej części dorzecza Wisły. In: Z. Górka, A. Jelonek (eds.), Geograficzne uwarunkowania rozwoju Małopolski. Instytut Geografii UJ, Kraków: 37–54.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0026-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.