PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positron annihilation studies of mesoporous iron modified MCM-41 silica

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 40th Polish Seminar on Positron Annihilation PSPA'2012, 13-14 June 2012, Kazimierz Dolny, Poland
Języki publikacji
EN
Abstrakty
EN
MCM-41 silica materials modified by iron incorporation in the stage of its synthesis were investigated. The aim of the studies was determination of the nature of iron species and the influence of its content on the structural changes of materials and following the changes of their properties. For this purpose, the N2 sorption/desorption method and positron annihilation lifetime spectroscopy (PALS) were used. Disappearance of the longest-lived ortho-positronium (o-Ps) component (tau5) present in the PALS spectra of the initial MCM-41 material in the spectra of Fe-modified MCM-41 measured in vacuum is a result of a strong chemical o-Ps quenching and/or the Ps inhibition mechanism. Filling of pores by air or N2 at ambient pressure causes reappearance of the (tau5) component with lifetime shortened in comparison to that observed in vacuum for pure MCM-41 to the extent which can be explained by usual paramagnetic quenching in air. In contrary to the tendency observed for (tau5) lifetime which is practically independent of Fe content, the relevant intensity I5 monotonically decreases. This fact suggests that only inhibition of Ps formation occurs for the samples in air. Observed anti-quenching effect of air seems to be a result of competition of two processes : neutralization of surface active centres acting as inhibitors and considerably weaker paramagnetic quenching by O2 molecules.
Czasopismo
Rocznik
Strony
245--250
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
autor
autor
  • Maria Curie-Skłodowska University, Institute of Physics, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6220, Fax: +48 81 537 6191, marek.wiertel@umcs.lublin.pl
Bibliografia
  • 1. Arends IWCE, Sheldon RA (2001) Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent development. Appl Catal A 212:175–187
  • 2. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distribution in porous substances. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380
  • 3. Beck JS, Vartuli JC, Roth WJ et al. (1992) A new family of mesoporous sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843
  • 4. Chakrabarti S, Chaudhuri S (2005) Positron annihilation lifetime changes across the structural phase transition in nanocrystalline Fe2O3. Phys Rev B 71:064105 (6 pp)
  • 5. Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Char 23:9–19
  • 6. Goworek T, Górniak W, Wawryszczuk J (1992) The sources of distortions and errors in the analysis of positron lifitime spectra. Nucl Instrum Methods A 321:560–570
  • 7. Ito Y (1988) Radiation chemistry: Intraspur effects and positronium formation mechanisms. In: Schrader DM, Jean YC (eds) Positron and positronium chemistry. Elsevier, Amsterdam, pp 120–158
  • 8. Jean YC, Schrader DM (1988) Experimental techniques in positron and positronium chemistry. In: Schrader DM, Jean YC (eds) Positron and positronium chemistry. Elsevier, Amsterdam, pp 91–119
  • 9. Kansy J (1994) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods A 374:235–244
  • 10. Kobayashi Y, Ito K, Oka T, Hirata K (2007) Positronium chemistry in porous materials. Radiat Phys Chem 76:224–230
  • 11. Lefèvre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Science 324:71–74
  • 12. Proietti E, Jaouen F, Lefèvre M et al. (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Sci Commun 2, Article no. 416
  • 13. Schrader DM, Jean YC (1988) Introduction. In: Schrader DM, Jean YC (eds) Positron and positronium chemistry. Elsevier, Amsterdam, pp 1–26 250 M. Wiertel et al.
  • 14. Wang Y, Zhang Q, Shishido T, Takehira K (2002) Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J Catal 209:186–196
  • 15.Zaleski R (2010) EELViS, http://eelvis.sourceforge.net
  • 16.Zaleski R, Wawryszczuk J, Borówka A, Goworek J, Goworek T (2003) Temperature changes of the template structure in MCM-41 type materials; positron annihilation studies. Microporous Mesoporous Mater 62: 47–60
  • 17. Zaleski R, Wawryszczuk J, Goworek T (2007) Pick-off models in the studies of mesoporous silica MCM-41. Comparison of various methods of the PAL spectra analysis. Radiat Phys Chem 76:243–247
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0025-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.