PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoluminescence and positron annihilation lifetime studies on pellets of ZnO nanocrystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 40th Polish Seminar on Positron Annihilation PSPA'2012, 13-14 June 2012, Kazimierz Dolny, Poland
Języki publikacji
EN
Abstrakty
EN
We explore the interrelationships between the X-ray diffraction patterns, the photoluminescence spectra and the positron lifetimes obtained from circular pellets composed of commercial ZnO nanoparticles. The experimental results are studied as a function of thermal treatment at different temperatures. X-ray diffractograms reveal the temperature- independent wurtzite phase structure of nanocrystals and show huge enlargement of ZnO grains after annealing at temperatures higher than 700 centigrade. Photoluminescence measurements exhibit two emission bands : a near band edge emission in UV (small tilde 378 nm) and a defect-related broad visible peak with a maximum in the green region ( small tilde 502 nm). The significant enhancement of the green emission at the expense of UV luminescence is observed after sample sintering at 800 and 1000 centigrade. The positron annihilation lifetime spectroscopy (PALS) is applied in order to study the thermally induced evolution of defects. The lifetime components show a step-like dependence on the thermal treatment, but do not follow exactly the variation in crystallographic phases and only vaguely follow differences in photoluminescence. The positron data indicate therefore some additional structural and/or defect changes. The possible origin of green luminescence from ZnO pellets is discussed.
Czasopismo
Rocznik
Strony
189--194
Opis fizyczny
BIbliogr. 34 poz., rys.
Twórcy
autor
autor
autor
autor
autor
  • Nicolaus Copernicus University, Institute of Physics, 5/7 Grudziądzka Str., 87-100 Toruń, Poland, Tel.: +48 56 611 3291, Fax: +48 56 622 5397, kamil@fizyka.umk.pl
Bibliografia
  • 1. Borseth TM, Tuomisto F, Christensen JS et al. (2006) Deactivation of Li by vacancy clusters in ion-implanted and flash-annealed ZnO. Phys Rev B 74:161202(R)
  • 2. Brauer G, Kuriplach J, Cizek J et al. (2007) Positron lifetimes in ZnO single crystals. Vacuum 81:1314–1317
  • 3. Chen ZQ, Yamamoto S, Maekawa M, Kawasuso A, Yuan XL, Sekiguchi T (2003) Postgrowth annealing of defects in ZnO studied by positron annihilation, X-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements. J Appl Phys 94:4807–4812
  • 4. Djurisic AB, Choy WCH, Roy VAL et al. (2004) Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv Funct Mater 14;9:856–864
  • 5. Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2;8/9:944–961
  • 6. Djurisic AB, Ng AMC, Chen XY (2010) ZnO nanostructures for optoelectronics: Material properties and device applications. Prog Quant Electron 34:191–259
  • 7. Domingos HS, Carlsson JM, Bristowe PD, Hellsing B (2004) The formation of defect complexes in a ZnO grain boundary. Interface Sci 12:227–234
  • 8. Garces NY, Wang L, Bai L, Giles NC, Halliburton LE, Cantwell G (2002) Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. Appl Phys Lett 81;4:622–624
  • 9. Gong Y, Andelman T, Neumark GF, O’Brien S, Kuskovsky IL (2007) Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification. Nanoscale Res Lett 2:297–302
  • 10. Gu Y, Kuskovsky I, Yin M, O’Brien S, Neumark GF (2004) Quantum confinement in ZnO nanorods. Appl Phys Lett 85:3833–3835
  • 11. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl Phys Lett 76:2901–2903
  • 12. Irimpan L, Nampoori VPN, Radhakrishnan P, Deepthy A, Krishnan B (2007) Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J Appl Phys 102:063524
  • 13. Janotti A, Van de Walle CG (2007) Native point defects in ZnO. Phys Rev B 76:165202
  • 14. Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501
  • 15. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res A 374:235–244
  • 16. Karbowski A, Fidelus JD, Karwasz GP (2011) Testing an Ortec Lifetime System. Mater Sci Forum 666:155–159
  • 17. Katerinopoulou A, Balic-Zunic T, Lundegaard LF (2012) Application of the ellipsoid modeling of the average shape of nanosized crystallites in powder diffraction. J Appl Crystallogr 45;1:22–27
  • 18. Li D, Leung YH, Djurisic AB et al. (2004) Different origins of visible luminescence in ZnO nanostructures A. Karbowski et al.fabricated by the chemical and evaporation methods. Appl Phys Lett 85;9:1601–1603
  • 19. Lin BX, Fu ZX, Jia YB (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943–945
  • 20. Liu X, Wu X, Cao H, Chang RPH (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95;6:3141–3147
  • 21. Mishra AK, Chaudhuri SK, Mukherjee S, Priyam A, Saha A, Das D (2007) Characterization of defects in ZnO nanocrystals: Photoluminescence and positron annihilation spectroscopic studies. J Appl Phys 102:103514
  • 22. Mo CM, Li YH, Liu YS, Zhang Y, Zhang LD (1998) Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J Appl Phys 83:4389–4391
  • 23. Qiu J, Li X, He W et al. (2009) The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 20;15:155603
  • 24. Ramani M, Ponnusamy S, Muthamizhchelvan C (2012) Zinc oxide nanoparticles: A study of defect level blue-green emission. Opt Mat 34:817–820
  • 25. Shan FK, Liu GX, Lee WJ, Lee GH, Kim IS, Shin BC (2005) Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition. Appl Phys Lett 86:221910
  • 26. Sharma SK, Pujari PK, Sudarshan K et al. (2009) Positron annihilation studies in ZnO nanoparticles. Solid State Commun 149:550–554
  • 27. Tuomisto F, Saarinen K, Look DC, Farlow GC (2005) Introduction and recovery of point defects in electron-irradiated ZnO. Phys Rev B 72:085206
  • 28. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. Appl Phys Lett 68;3:403–405
  • 29. Wang D, Chen ZQ, Wang DD et al. (2010) Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism. J Appl Phys 107:023524
  • 30. Wang D, Reynolds N (2012) Photoluminescence of zinc oxide nanowires: the effect of surface band bending. Condens Matter Phys 2012:950354
  • 31. Wei X, Man B, Xue C, Chen C, Liu M (2006) Blue luminescent center and ultraviolet-emission dependence of ZnO films prepared by pulsed laser deposition. Jpn J Appl Phys, Part 1 45:8586–8591
  • 32. Xiong G, Pal U, Garcia Serrano J (2007) Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J Appl Phys 101;2:024317
  • 33. Zeng H, Cai W, Hu J, Duan G, Liu P, Li Y (2006) Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation. Appl Phys Lett 88:171910
  • 34. Zhao QX, Klason P, Willander M, Zhong HM, Lu W, Yang JH (2005) Deep-level emissions influenced by O and Zn implantations in ZnO. Appl Phys Lett 87;21:211912
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0025-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.