PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stable gait synthesis and analysis of a 12 - degree of freedom eiped robot in sagittal and frontal planes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Legged machines have not been offered biologically realistic movement patterns and behaviours due to the limitations in kinematic, dynamics and control technique. When the degrees of freedom (DOF) increases, the robot becomes complex and it affects the postural stability. A loss of postural stability of biped may have potentially serious consequences and this demands thorough analysis for the better prediction and elimination of the possibility of fall. This work presents the modelling and simulation of twelve degrees of freedom (DOF) biped robot, walking along a pre-defined trajectory after considering the stability in sagittal and frontal planes based upon zero moment point (ZMP) criterion. Kinematic modelling and dynamic modelling of the robot are done using Denavit-Hartenberg (DH) parameters and Newton-Euler algorithm respectively. This paper also proposes Levenberg- Marquardt method for finding inverse kinematic solutions and determines the size of the foot based on ZMP for the stable motion of biped. Biped robot locomotion is simulated, kinematic and dynamic parameters are plotted using MATLAB. Cycloidal gait trajectory is experimentally validated for a particular step length of the biped.
Twórcy
Bibliografia
  • [1] M. Raibert et al., “Legged robots that balance”. MIT press Cambridge, MA, 1986.
  • [2] M. Vukobratovic and B. Borovac, “Zero-moment point-thirty five years of its life, ”International Journal of Humanoid Robotics, vol. 1, no. 1, 2004, pp. 157–173.
  • [3] P. Vadakkepat and D. Goswami, “Biped locomotion: stability, analysis and control,”Robotica, vol. 27, no. 1, 2009, pp. 355–365.
  • [4] T. Zielinska, C. Chew, P. Kryczka, and T. Jargilo, “Robot gait synthesis using the scheme of human motions skills development”, Mechanism and Machine Theory, vol. 44, no. 3, 2009, pp. 541–558.
  • [5] F. Silva, T. Machado et al., “Energy analysis during biped walking”. In: Robotics and Automation, Proceedings of IEEE International Conference, vol. 1. IEEE, 1999, pp. 59–64.
  • [6] Z. Tang, C. Zhou, and Z. Sun, “Trajectory planning for smooth transition of a biped robot”. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 2, IEEE, 2003, pp. 2455–2460.
  • [7] M. Vukobratovic, D. Andric; B. Borovac, ”How to achieve various gait patterns from single nominal”, International Journal of Advanced Robotic Systems, vol. 1, no. 3, 2004, pp. 99–108.
  • [8] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, “The realization of dynamic walking by the biped walking robot WL-10RD”. In ICAR’85, 1985, vol.1, pp. 459–466.
  • [9] H. Miura and I. Shimoyama, “Dynamic walk of a biped,” International Journal of Robotics Research, vol. 3, no. 2, 1984, pp. 60–74.
  • [10] W. Spong, M. Vidyasagar, Robot dynamics and control, John Wiley& Sons, New York, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.