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Abstract: 
A brief review of few problems arising in the correct nu-
merical expression and evaluation of results of indirect 
multi-parameter measurements is given. There is included 
a theoretical basis for determining the estimates of values, 
uncertainties and correlation coefficients of the indirectly 
obtained multi-measurand, which are processed  from 
data of the simultaneously measured set of variables. The 
algebra of random vectors is used. A numerical example 
illustrates the linear transformation of two variables and 
the types of improperly evaluated results – that may occur 
with overrounding. There are given thresholds of the safe 
uniform rounding of mean vector and its scatter ellipsoid.  
There is proposed an upgrading of the GUM Example H.2 
and of the uncertainty equation for nonlinear functions. It 
is also evidenced that correlation matrix of current 2010 
data of  fundamental physical constants recommended 
by CODATA has non-negligible negative eigenvalues. In 
the end of this work it is argued for the urgent needs of 
standardization of e-publication of the experimental data 
in two parts: e-printed traditional narrative part, and an 
attached computer readable file with all numerical input 
data and results, to allow “fast” numerical peer review 
of the proposed publication reporting new measurement 
results. This work is a result of an interdisciplinary coop-
eration of a metrologist and a nuclear physicist.

Keywords: uncertainty, indirect measurements, multi-
measurand, correlated data 

1.	 Introduction
Simultaneous measurements of several statistically re-

lated quantities, i.e. correlated, are performed in science, 
education, technology, economy and many other disci-
plines. From the digitally processed on- or off-line data of 
m variables, directly measured on input, the n other varia-
bles (in physics called as observables) are determined indi-
rectly on output, if their mutual relation is known. In addi-
tion to estimators of values and uncertainty the knowledge 
about correlation coefficients of output quantities also is of 
special importance for some or all of these variables to be 
jointly processed further. 

Accuracy of evaluated output multi-measurand data de-
pends on the statistical uncertainties of given parameters 
of input multi-measurand, as well as on the accuracy of 
their processing. Final rounding of indirectly obtained data 
of output multi-measurand must depend on a uncertainty 
of the input data [6]. The “safe rounding” of the digitally 
processed multi-measurand data should be done in such 
a way that they are not be damaged. If the accuracy of 
final uncertainties or number of repetitions of raw meas-

urements are not given in publication of input data then 
it should not be assumed that the values of estimators of 
standard deviations and correlation coefficients of the ini-
tial variables are correctly found from measurement data 
and are as their values for whole populations.

In indirect multi-dimensional measurements there are 
two border types of relations of the uncertainty both com-
ponents uA and uB [1]. 

First case: uncertainty uA<<uB. In such situations it is 
enough to provide the necessary instrumental resolution 
and accuracy for measurement of input values and to de-
termine cross-links to the output. 

Second case: uA>>uB when all environmental effects 
interacting on input measurements are carefully elimi-
nated and the uncertainty of type B is small compared to 
the range of random scatter of observed variables. Here 
one should achieve maximum accuracy in measurements 
and then the information obtained in the experiment is not 
partially lost in the processing of the random input data 
and in the rounding of the obtained results. The number of 
observations should be as large as possible to minimize the 
statistical type uncertainty uA. 

2.	 Theoretical backgrounds in short
In multivariate indirect measurements the input multi-

measurand can be expressed by random vector X=[X1, 
X2,... Xm]T and output one – by vector Y =[Y1, Y2, ... Yn]

T.
These random vectors X and Y of dimensions m and n, 
respectively, can be described by the multi-dimensional 
distributions. In general case the relation between them 
can be expressed  by

Y = F(X)
If F is a linear operator, then 

Y = S·X
Where: S is matrix of dimensions n x m and n ≤ m. 

Two examples of multivariate indirect measurements 
are given in Fig 1. 

Fig. 1. Examples of indirect evaluation of measure-
ment data of 2 jointed output variables Y=[Y1, Y2]

T from 
measurements of 3 input variables X=[X1, X2, X3]

T: 
a) no correlated, b) correlated X1, X2 [10]
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The basic structure of the numerical estimation of the 
multi-measurand should contain averaged components of 
the random vector and a description of the multidimen-
sional scatter region of it. The accuracy of both these data 
should be also known. Even if the relation Y = F(X) is non-
linear, in the most cases for small deviations of the random 
vectors X and Y their scatter regions can be defined by 
a model of joint n-dimensional normal probability distri-
bution. Then, for a given probability density p0 the distri-
bution region for p ≥ p0 takes the form of a n-dimensional 
hyper-ellipsoid with its center at the end of the average 
vector. Relations between covariance matrices of hyper-
ellipsoids of the output and input measurands (in a linear 
approximation of the observables in the vicinity of the end 
of mean vector Y ) are described analytically by

TScSc XY =

Where:  is the matrix of linear sensitivity 
coefficients.

The matrix r of the correlation coefficients is defined 
by the relation 

 Tσcσr =

It is called also shortly as the correlator. 
A multidimensional distribution is normal if matrices c 

and r are positive definite, i.e. their eigenvalues λi, which 
are the roots of the characteristic equations 

det[c-λ1]=0, and det[r-λ1]=0,

should be positive [3]. 
This requirement was not included in Supplement 2 of 

GUM [1] in above form. 
So, to express correctly the result of measuring or 

evaluating random vector quantity the minimal data 
structure should contain: 
–	 Mean vector, 
–	 Vector of standard deviations and their uncertainties 

(or number of measurements in each sample),
–	 Positive definite correlation matrix and uncertainties 

of their elements,
–	 Machine precision used to compute vector parameters 

and eigenvalues of correlation matrix.
With these data the user will have complete informa-

tion to plan and control the safe usage of data in next 
computations.   

In Fig 2 there is shown an    example of a linear 
transformation of two dimension (2D) “Greek” vector  
X=[h, z]T to “Latin” vector Y=[x, y]T [5]. 

Table 1. Basic formulas of the 2D random vector transformation of  Fig 2
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Fig. 1. Examples of indirect evaluation of measurement data of 2 
jointed output variables Y=[Y1, Y2]T from measurements of 3 input 

variables X=[X1, X2, X3]T: a) no correlated, b) correlated X1, X2 [10] 
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Fig 2. Linear transformation of 2D random vector [5] 
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Fig 3. Cases of improper presentation of correlated 2D data 

Fig 2. Linear transformation of 2D random vector [5]

Basic equations for the processing of 2D random vec-
tors are given in Table 1 and typical distortions of out-
put data by not proper – too high rounding are shown in 
Fig. 3 [5].

To express difference ΔY = Yi –  Y between the center 
of the ellipse of transformed original raw data Y and the 
end of rounded vector Yi Mahalanobis distance χ is used, 
which is given by [12]

T12 ),(
1

YrY ∆∆= −yx
yxσσ

χ

Let us consider rounding of data Y given in Fig 2 [5].
Raw data Y rounded to 3 digits after decimal point:

Fig 3. Cases of improper presentation of correlated 2D 
data
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        Y=[1,845(100); 1,155(100)]
(rxy=0,9998), 

B. Rounding of Y to 2 digits after decimal point:

Y1= [1,84(10); 1,16(10)];

ΔY1= Y1–Y= [–0,005; 0,005]; 1252
1 >=χ  

C. Rounding of Y to 1 digit after decimal point:

Y2= [1,8(1); 1,16(1)];

            Y2=Y2–Y= [–0,045; 0,045]; 125002
2 >>=χ

For the ellipse border the Mahalanobis distance χ=1. 
Then the ends of both rounded vectors Y1, Y2 situated are 
outside of the ellipse of transformed original random in-
put data Y. If the assumption proposed by V. Ezhela in 
[2– 4] for safety processing of random vectors is to be sat-
isfied, these ends has to be situated inside of this ellipse. 
Then in both cases the results are over-rounded. Such as-
sumption can be valid only for the absolutely accurate in-
put statistical data from the whole random populations of 
Xi or for very large going to infinity, number N of sample 
elements, and when  instrumental errors are negligible. 
That condition is not fulfilled in many existing in mea-
surement situations, where data samples of a small num-
ber of elements are only possible to obtain in a limited 
time of observation. Then all estimators of mean values, 
standard deviations and correlation coefficients obtained 
from the samples of limited number N of multivariate ob-
servations have their own uncertainties, which are quite 
high for small N. From above it follows that two different 
type requirements for precision of processing and round-
ing procedures of multivariate data can be used: 

– very high for safety numerical processing of input 
random vector of statistical parameters treated as abso-
lutely accurate (if they are given for whole population or 
for being safe if accuracy of them is unknown), and 

– lower, dependent on given or possible to be estimat-
ed accuracy of statistical parameters of the input multi-
measurand. 

In the second case thresholds for limiting the round-
ing of output data parameters have to be established as 
dependent on the accuracy of statistical parameters of 
input samples. 

3.	 Thresholds of the safe rounding of trans-
formed multivariate data
Applying spectral theorems of matrix theory V. 

Ezhela in [4] proposed thresholds of the number of dig-
its after decimal point for fully safe independent uniform 

rounding of the multivariate random vector data. All such 
safety thresholds of rounding are expressed in terms of 
decimal numbers [6], i.e. for: 
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Where: λmin –  minimal eigenvalue of the correlation 
matrix,   – “tolerance” factor at defined confidence level.

Above formulas look sophisticated, but are quite easy 
to be used – see examples in [4], [6] and [7]. For data 
of the Example H.2 of GUM [1] (the same as in chapter 
9.4 of Supplement 2 [11]) after high precision process-
ing of the input data correctness of the rounding of the 
multivariate output vector Y=[R, X, Z], when TCL=1 (one 
standard deviation) are the following numbers of digits 
[4], [7]:

Upper Integer{Ath[R]} = 5 
Upper Integer{Ath[X]} = 4 
Upper Integer{Ath[Z]} = 5 
Correlator of the output vector [R, X, Z]T has elements 

uniformly rounded to 9 digits and the smallest eigenvalue 
λmin=2,22711×10-8 and for this λmin the minimum number 
of digits of the correlation coefficients is: 

 AC(CorH3) = 8
As large number of significant figures are obtained 

from proposed by V. E. “thresholds of uniform round-
ing”, such as for scalars by GUM, valid with assump-
tions: 

• input data are treated as absolutely accurate,
• scatter region for p≥p0 is kept as n-ellipsoid,
• numerical processing is “safety rounded”, and 
• the output vector must be maintained inside of the 

scattered area of the transformed raw input data.
Then such of many digits thresholds are not needed in 

measurements. They are valid only for the save digital 
processing of random vector itself because of the assump-
tion that mean values of components the input vector, their 
standard deviations and correlation coefficients are abso-
lutely accurate known, which is not happen for any real 
experiments. Obtained experimentally measurement data 
are not absolutely accurate as number N of observations in 
samples are limited (uncertainty type Ais rising with de-
creasing of N) and unknown instrumental errors are not 
negligible (represented by uncertainty type B). Then in re-
quirements for processing and rounding the uncertainties 
of estimators of mean value (or other the most probable 
values of measured vector components e.g. mid-range for 

uniform distribution and for trapeze 
distributions of the ratio of their bases 
from 1 to 0,65. The accuracy of stand-
ard deviations and of correlation coef-
ficients have to be also taken in con-
siderations. Then the rounding of real 
multivariate measurement data has to 
be done below thresholds given by V. 
Ezhela and dedicated for the save data 

Table 2

Parameters x xσ y yσ xσ2 yσ2

Raw results 0,3242 0,0664 0,1555 0,0256 0,1328 0,0512
A. rounding to 3 digits 0,324 0.067 0.156 0,026 0,133 0,051
B. rounding to 2 digits 0.32 0.07 0,16 0.03 0,14 0,05
C. rounding to 1digit 0.3 < 0.1 0,2 < 0.1 <0,2 <0,1
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An graphical illustration of such rounding of data 
given in table 2 for constant correlation coefficient rxy is 
shown in Fig. 4.

The largest ellipse C obtained after rounding standard 
deviations sx, sy to 1 digit do not fully cover the primary 
ellipse A. But it was checked also that for larger ellipses 
tangential to the rectangular of twice larger sides ±2sx, 
±2sy after their rounding to 2 or to 1 digit it is ok. For 
example for such ellipses A2, B2 (not given in Fig. 3) it is

( ) ( ) ( )ABB xxxx σσ 22 >−−

( ) ( ) ( )ABB yyyy σσ 22 >−− .

Rounding of the correlation coefficients depend on 
their value and on accuracy. Then special care, not con-
sidered here, is needed,

The different rounding of multivariate data with 
changes of correlation coefficients values  rij, also should 
be applied. Two following methods of such rounding be-
low thresholds are preliminary tested:
• Method 1 (of Z. L. W) – author  proposed to maintain 

a constant values of non diagonal elements of the posi-
tive covariance matrix, i.e.:

Where: signs in the up-
per index indicates the di-
rection of change.
• Method 2 (of V. E.) – 

V. Ezhela proposed to use 
truncation, i.e. to omit fur-
ther digits after no changed 
the last accepted digit [6]. 

Both methods are used 
for the output data of the 
Example H.2 GUM for 
rounding them to 3 and 2 
digits after decimal point 
[6]. Results are given be-
low in Table 3. 

processing itself only. Approximately it should be enough 
if precision of processing is the one digit more than the ac-
curacy of measured input data. 

Fig. 4. Rounding with constant correlation coefficient ρxy

It was checked:
–   positive definite of the rounded correlator; 
–   the relative distance by Mahalanobis χ2 [12] be-

tween the end of rounded vector and the center of raw 
original data after transformation.

Correlators of both methods are positive definite, but 
the full theoretical justification of the method 2 is not 
given jet. Method 2 gives a smaller values of Mahalano-
bis distances of ends of the rounded vectors from the 
ellipse center of transformed raw data, but its smallest 
eigenvalue is closer to zero than obtained in method 1. 

Conclusion: since in multivariable measurements 
the rounding level of output vector Y depends not only 
on the precision of digital processing but mainly on the 
uncertainties of all statistical parameters of input vector 
X, then additional formulas of rounding thresholds then 
given by V. Ezhela [4], [6] are also urgently needed.

4.	 Upgrading the GUM proposals for multi-
variable measurements 

GUM [1] and other official metrological documents 
about uncertainty are applied up to now only in measure-
ments of the single quantity. But statements in the main 
text of GUM was formulated in such a manner that the 
reader gets the impression that a generalization to the 
multivariate case is straightforward. That was consid-
ered in details in Example H.2 of GUM which illustrates 
clauses 7.2.5 and 7.2.6.

 Supplement 2 to GUM [11] – about extension of 
evaluation uncertainty of measurements to any number 
of quantities, has been published just now and time to 
implement its clauses in practice is not jet long enough.

About Example H.2 of GUM
In Table H.2 of GUM [1] there are given five (and in 

Supplement 2 – six) raw simultaneous measurements of 
input vector X=[U, J, Φ]T and vector Y=[R=UcosΦ/J, 
X=UsinΦ/J, Z=U/J]T  is evaluated. The results are pre-
sented there in Tables H.3 and H.4. Rounding of corre-
lation coefficients is not properly done there, since the 
smallest eigenvalue of correlator matrix is negative and 
so the scatter region is not of the 3D-ellipsoide form. 
Also final output data of Example H.2 does not satisfy 
“physical law” of impedance of the two-terminal passive 
element which is: X2+Y2=Z2 as s2= -71,5 [3], [6], [7].

Table 3
Method 2 (of V. E.)

Rounding to 3 digits
Mean
value

Standard
Deviation Correlator

127,732 0,160 1 –0,588 –0,485
219,847 0,661 –0,588 1 0,992
254,260 0,529 –0,485 0,992 1

Eigenvalue: [2,40297; 0,596499;
0,000533094]

χ2 1, 108

Rounding to 2 digits
Mean
value

Standard
Deviation Correlator

127,73 0,16 1 –0,58 –0,48
219,85 0,66 –0,58 1 0,99
254,26 0,53 –0,48 0,99 1
Eigenvalue: [2,26846; 0,657234; 0,0743036]

χ2 6,445

Method 1 (of Z.L.W)

Rounding to 3 digits
Mean
value

Standard
Deviation Correlator

127,732 0,160 1 –0,586 –0,483
219,847 0,661 –0,586 1 0,991
254,60 0,529 –0,483 0,991 1

Eigenvalue: [2,39983; 0,598631;
0,00154204]

χ2 8,39

Rounding to 2 digits
Mean
value

Standard
Deviation Correlator

127,73 0,16 1 –0,59 –0,48
219,85 0,66 –0,59 1 0,99
254,26 0,53 –0,48 0,99 1

Eigenvalue: [2,39972; 0,598797; 0,00148649]
χ2 284,0
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For s2>0.1 (i. e. s>0.316) is obtained u2(F)<0. So, the 
additional component of the uncertainty formula of non-
linear function given in Notice to clause 5.1.2 of GUM 
should be corrected by removing from the sum in brack-
ets the second component with the third derivative. 

5.2. Nonlinear processing of input vector 
In case of the nonlinear processing of input vector 

the widely used as approximation differential “linear 
uncertainty propagation law” does not work properly in 
more accurate calculations for highly nonlinear func-
tions. The nonlinear uncertainty propagation should be 
used with the obligatory positivity constraints

Ci,  [δCa, δCb ]    Fk(Ci),  [δFm, δFn ] 

Cоmpоnent of X (input)       Cоmpоnent of Y (output) 

FF ji δδ =],[
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Covariance matrix [δFm, δFn] is non-degenerate and 
positive definite if dimensions dim(Ci)=m,  dim(Fk)=n 
and the order T of component of the Taylor polynomials 
approximated the measuring vector function Fk obey the 
inequality

1
!!

!)( −+=≤
Tm

Tm
nn th

Where:

Commentary on fundamental physical constancies
The adjustments of the fundamental physical con-

stants (FPC) are regularly performed by the Fundamen-
tal Constants Data Center at NIST and recommended by 
CODATA as the unique source of the current FPC val-
ues. There are 325 adjusted quantities, from which 79 are 

called basic algebraically independent constants Cα
B. As 

an example there are listed in Table 4 last values of four 
FPC given by CODATA 2010 [9] in SI units and below – 
their correlation matrix.

Eigenvalues of above correlation matrix are: 
[2.99942,  1.00006,  0.000719993, - 0.000202165]. 
The last eigenvalue is non-negligible negative.

Table 4

Elementary charge  e C  1.602 176 565(35)⋅ 10-19         e             h            me  

Planck constant  h J s  6.626 069 57(29)⋅ 10-34     1.0000  

Electron mass  me kg   9.109 382 91(40)⋅ 10-31     0.9998      0.9999  

1/fine structure const 1/ α(0)    137.035 999 074(44)  − 0.0145   − 0.0072      0.0075  

 

For establishing requirements of safety digital process-
ing purposes according, the input multivariate measured 
data of H.2 Example are firstly treated as absolutely ac-
curate data. Then, for such theoretical case, according 
thresholds given by V. Ezhela [4] (see chapter 3) the re-
quired digit numbers after decimal point are as follows: 
for mean values and standard uncertainty of R and Z – 5 
digits, of X - 4 digits and for correlation coefficients – 8 
digits ! [4, 7]. Therefore, high numbers of digits cannot be 
accepted for describing the measurement results as they 
are obtained under the assumptions that: input data are 
treated as fully accurate, numerical results of processing 
are safety and uniformly rounded to maintained vector 
end in the scattered area of the transformed original input 
data. They can be used only as a reference of process-
ing of the absolutely accurate data of the random vector 
of similar component values as parameter estimators of  
samples of the input vector X in H.2 Example. All these 
samples have only N=5 ! (or 6 in supl. 2) measurements 
each and the accuracy of SD of each variable and of cor-
relator elements is very poor. Relative uncertainty of SD 
of such small samples is about 36% – see Table E.1 in 
GUM [1].

 
5.	 About Notice GUM on the nonlinear 

uncertainty propagation
In the multivariable case the linear propagation of 

errors from m-dimensional vector X to n-dimensional 
vector Y in some cases is misleading for n>m, i.e. for 
nonlinear functions. 

5.1. Single measurand case
In the Notice to clause 5.1.2 of GUM [1] is determi-

nate the uncertainty of highly non-linear single function 
y=f(X) only. There is recommended that the linear propa-
gation of variance is supplemented by higher-order com-
ponents, i.e.

V. Ezhela  noticed in [4] that calcu-
lations of the variance u2(y) according 
to this formula may give a false nega-
tive value because of the component in 
parentheses with the third derivative. 
This is illustrated below by the exam-
ple of the single nonlinear polynomial 
function

F(x) = 1- x + 2x2 + 3x3 + 4x4,

If measurand x is normally distributed around x= 0 with 
variance s2, then the variance u2(F) calculated according to 
the recommendation 5.1.2 is

u 2(F) = σ2F’(0)2 + 1/2σ4F’’(0)2 + σ4F’(0) F’’’(0) =
= σ2 [1+ σ2(16/2 -18)] = σ2 [1-10 σ2]

m 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

T 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

nth 1 2 3 2 5 6 3 9 19 4 14  4 5  20 55
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 Only two of constancies FPC can be used together 
in joint precision calculations. More about negative 
eigenvalues in CODATA publications is given in [3], 
[7], [8].

6.	 Application of e-publishing in  
multi-variable measurements 

The traditional form of the scientific communication 
based on the paper oriented e-publications is now not 
the proper way to present and to exchange the multi-
dimensional experimental data. After V. Ezhela in [3] 
the standardization of two-component forms of the 
scientific publication is unavoidable. First component 
will be the traditional descriptive scientific text already 
well formalized by publishers. The second part should 
be computer readable file with all numerical input data 
and results to allow “fast” numerical peer review of the 
publication reporting new results. It is discussed in de-
tail in [3] together with given four dozen examples of 
“bad practice” of physical publications in journals of 
high “impact factor” and in other sources. Some par-
ticular problems connected with that proposal are in [8] 
and [10]. 

7.	 General conclusion
Some of the presented problems of the evaluation 

of results and uncertainty of the indirect multivariable 
measurements still need farer investigations to obtain 
clear enough backgrounds for the common internation-
al acceptance of the rounding and digital presentation 
methods of multivariate data results and of the calcula-
tion uncertainty of highly nonlinear related multivariate 
data. 

These problems are not yet fully included in just 
finished the first version of Supplement 2 to GUM [1] 
about the extension of expressing uncertainty to any 
number of quantities [11]. Then its recommendations 
should be corrected and included in the next upgraded 
version of Supplement 2 and taken into account also in 
other post-GUM documents. 
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