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Abstract: 
The issue of coordinated operation of multi-vehicle for 
a variety of tasks is getting increasing attention day by 
day and standing as a major research field due to their in-
creased capacity and flexibility they can offer as a team. 
This paper presents a novel algorithm for multi-vehicle 
navigation, based on exhaustive search to avoid a  set 
of randomly generated obstacles, predict the approxi-
mate position of other  vehicles and thus  keeping a safe 
distance to avoid collision and to maintain a formation 
amongst them while targeted towards the assigned goals. 
The proposed algorithm uses two optimizing functions 
in deriving drive commands, direction and turning, for 
a troop of vehicles. This particular algorithm is similar 
to the artificial potential field (APF) method which is 
widely used for autonomous mobile robot path planning 
due to its simplicity and mathematical elegance. In this 
work we have taken a behavior based reactive scheme 
together with artificially generated perturbation as the 
vehicles are running in a real time environment. Simula-
tions have been carried out for a group of four vehicles, 
paired in two groups, approaching two different targets 
avoiding eight randomly generated obstacles, and keep-
ing proper coordination between the members of intra 
and inter groups. The effectiveness of the proposed ap-
proach has been shown by some simulation results.

Keywords: behavior-based collision avoidance, rando-
mized obstacles, multi-vehicle coordination, particle 
swarm optimization.

1.	 Introduction
The challenge that  a troop of multiple uninhabited au-

tonomous vehicles (UAVs) would be able to adaptively 
react to their environment, whether known, unknown or 
uncertain,  and learn about their surroundings while fol-
lowing either an individual or a communal agenda is an 
intriguing field of research. Achieving such a degree of 
control and producing such sophisticated behavior re-
mains an elusive goal that demands considerable atten-
tion and this is inherently a complex task. The problem 
of multi-vehicle coordination and control has been re-
ceiving an exquisite amount of attention during the past 
few years due to critical importance of the field in wide-
ranging applications [8].

In many practical applications of autonomous vehicles 
multiple teams are to be used. Such teams have many po-
tential benefits, including faster completion through par-
allelism and increased robustness through redundancy. 

Further, teams of vehicles can increase the application 
domain of autonomous vehicles by providing solutions 
to tasks that are inherently distributed, either in time, or 
in space, or in functionality. Since the 1980s, researchers 
have addressed many issues in multi-vehicle, or multi-
robot teams or automated guided vehicles (AGVs) [12], 
such as control architectures, communication, task al-
location, swarm robots, learning [25]. A critical issue 
in these mobile robot teams is coordinating the motions 
of multiple vehicles interacting in the same workspace. 
Regardless of the mission of the vehicles, they must be 
able to effectively share the workspace to prevent inter-
ference between the team members. Solutions to the mo-
tion coordination problem are approached in a variety of 
ways, depending upon the underlying objectives of the 
vehicle team. In some cases, the paths of the robots are 
explicitly planned and coordinated in advance, as might 
be needed in a busy warehouse management application. 
In other cases, planning is relaxed and emphasis is placed 
on mechanisms to avoid collision, applicable for tasks 
such as automated hospital meal deliveries. In yet other 
situations, the robots could have mechanisms with little 
pre-planning that focus on coordinating vehicle motions 
in real-time using reactive, behavior-based, or control-
theoretic approaches, such as would be used in a convoy-
ing or formation-keeping application.

Existing work on multi-vehicle control focuses reced-
ing-horizon planning (an optimization method) and hier-
archical structures. The receding-horizon trajectory plan-
ner based on Mixed Integer-Linear Programming (MILP) 
is capable of planning planner-based trajectories directed 
to a goal [14,15,16]. The goal is constrained by no-fly 
areas, or obstacles, and is free from leader-follower ar-
chitecture which is adopted by model predictive control 
(MPC) [17]. Game-theoretic approach is also adopted by 
different co-ordination schemes for decision making of 
the multi-vehicle problem [18,19,20]. A disjoint path al-
gorithm for a reconfiguration  of multi-vehicle was also 
proposed [21]. A class of triangulated graphs for alge-
braic representation of formations have been introduced 
to specify a mission cost for a group of vehicles [22]. 
The present work focuses on simultaneous movement of 
a troop of vehicles from their initial locations towards 
different targets in such an environment where obstacles 
are generating stochastically based on the Artificial Po-
tential Field (APF) approach. The basic idea of the APF 
approach is to fill the robot’s workspace with an artificial 
potential field in which the robot is attracted to its target 
position and is repulsed away from the obstacles [4]. This 
method is particularly attractive because of its elegant 
mathematical analysis and simplicity. The application of 
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APF for obstacle avoidance was first developed by Kha- 
tib [3]. In the past decade this method has been studied 
extensively for autonomous mobile robot path planning 
by many researchers [5-7]. This is a new approach where 
the troops are divided into two groups and set out for 
their own targets, maintaining a formation amongst them. 
This work is an extension of the work done by Kevin 
Passino [2] on obstacle avoidance of a single vehicle in 
presence of  a number of fixed obstacles.  

2.	 Problem description
A. 	 Cooperation of multi-vehicles		

The word cooperation means interaction or integra-
tion of multiple vehicles [11]. In a cooperative team the 
vehicles have to communicate, exchange information or 
interact in some way to achieve an overall mission. The 
term cooperation has been widely discussed in different 
scientific community and different definitions have been 
proposed. 

B. Multi-vehicle path planning problem
It is defined as follows: given a set of m vehicles in 

k-dimensional workspace, each specified with an initial 
starting configuration (e.g., position and orientation) and 
a desired goal configuration, determine the path each ve-
hicle should take to reach its goal, while avoiding colli-
sions with obstacles and other vehicles in the workspace. 
More formally, let A be a rigid vehicle in a static work-
space W =  k� [18,19], where k = 2 or k = 3. The work-
space is populated with obstacles. A configuration q is 
a complete specification of the location of every point on 
the robot geometry. The configuration space C represents 
the set of all the possible configurations of A with respect 
to W. Let O ⊂ W represent the region within the work-
space populated by obstacles. Let the close set A(q) ⊂W 
denote the set of points occupied by the vehicle  when it 
is in the configuration q Î C. Then, the C-space obstacle 
region, obsC , is defined as [1]:

{=obsC q Î | ( ) ο∩ ≠ ΦC A q }         (1)

The set of configurations that avoid collision (called 
the free space) is:

\=free obsC C C .                    (2)

A free path between two obstacle-free configurations 
initC and goalC  is a continuous map:

  [0,1] freeCτ →                        (3)                                               

such that (0)τ = initc  and .(1)τ = goalc .
For a team of m vehicles, define a state space that con-

siders the configurations of all the robots simultaneously:

1 2 ...= × × × mX C C C .                  (4)

Note that the dimension of X is N, where =N

1
dim( )

=∑m i

i
C The C-space obstacle region must now be 

redefined as a combination of the configurations leading 
to a robot-obstacle collision, together with the configura-
tions leading to vehicle to vehicle collision. The subset 

of X corresponding to robot iA with the obstacle region 
O, is

{ | ( ) }= ∈ ≠ Φi i i
obsX x X A q                      (5)

The subset of X corresponding to robot Ai in collision 
with robot 

jA  is

     { | ( ) ( ) }= ∈ ∩ ≠ Φij i i j i
obsX x X A q A q            (6)

The obstacle region in X is then defined as the combi-
nation of Equations (5) and (6), resulting in 

 
1 ,

( ) ( )
= ≠

= ∪∪ ∪
m

i i
obs obs obs

i ij i j

X X X                       (7)

With these definitions, the planning process for multi-
vehicle system treats X the same as C, and obsX the same 
as obsC ,where initC  represents the starting configuration of 
all the robots, and goalC represents the desired goal con-
figurations of all the vehicles.

The APF uses two types of potential field, namely a re-
pulsive potential field to force a robot away from obsta-
cles or forbidden regions and an attractive potential field 
to drive the robot to its goal. The robot moves under the 
action of a force that is equal to the negative gradient of 
that potential, and it is driven towards the positions with 
the lower potential.

In this paper, we consider the robot as one particle that 
moves under the action of the composition of forces 

�
rA , 

which is the summation of goal’s attractive force 
�

rgF  and 
the obstacle’s repulsive force 

�
orF  as shown in Fig. 1.

                                              

Fig. 1. Virtual attractive force of robot in APF

Typically, optimization criteria guide the choice of 
a  particular solution from an infinite number of possi-
ble solutions. Examples are:  minimal path lengths (local 
or global), minimal time to reach targets, and minimal 
energy consumption to reach the goal. Presence of  con-
straints brings forth more complexity. Such constraints 
arise from navigational restrictions e.g. limitation on the 
maximum angle of rotation, restrictions on maximum 
slope, inability to traverse rocky terrain, etc. or the need 
for a vehicles to move in tandem. Since general optimal 
solution for multiple moving objects is computational-
ly difficult, sometimes intractable [24], local optima is 
sought for instead of  global optima in the path planning 
problem.
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3.	 Problem formulation and the proposed 
scheme

 For convenience and for reducing complexity, the 
scope of the present work has been limited to the motions 
in only 2-D space. It is assumed that the obstacles are not 
dynamic but they are randomly generated in the work-
space. No vehicle is stationary with respect to another. 
So it is obligatory to keep a safe distance between mobile 
vehicles to avoid collision and maintain a formation. It 
is assumed that there are m no of vehicles and the ith one 
follows a discrete time kinematic model given as:

1 1( 1) ( ) cos( ( ))θ+ = +i i i
v v vx k x k d k             (8)

2 2( 1) ( ) sin( ( ))θ+ = +i i i
v v vx k x k d k             (9)

 ( 1) ( ) ( ( ))θ θ θ+ = +i i i
v v vk k f u k            (10)

where k is the discrete time index taking values of non-
negative integers {0,1,2,3,….}(in the present problem k 
denotes the number of search steps); i

vθ  is the orientation 
of the ith vehicle; vf θ  can be a nonlinear function encod-
ing kinematic restrictions on the vehicles; iu is the local 
controller corresponding to ith vehicle. For convenience, 
let
 

1 2
[ , ]=

p

i i i T
v v vx x x , and

 
[( ) , ]θ=

p

i i T i T
v v vx x . 

        
(11)

It has been assumed that the controller has prior ac-
cess to the information on randomly generated obstacles 
but not to the vehicles. The vehicles are to communicate 
with the controller (distributed controllers, dedicated one 
for each vehicle like an embedded system) to update the 
information on their positions at every iteration before 
taking the next move. The environment is modeled as 
a 2D, plane, having four quadrants (upper right and left 
and lower right and left) of a Cartesian coordinate system 
with axes (x1,x2). A Gaussian profile map has been set 
up which is accessible to all the vehicles through their 
controllers. It encodes the possible obstacle locations   

1 2[ , ]=i i i T
s s sx x x , i =1,2,…n obtained from sensory data 

which act as centers of the Gaussian peaks. It is assumed 
that the number of the obstacles is n (n = 8 for this case). 

Considering initial position to be [x1,x2], the mathe-
matical description is as given below:

1 2

2
1 2

1 2 2
1

( ) ( )
( , , 0) exp

=

 − + −
= = −  

  
∑

i in
s s

p i
i i

x x x x
M x x k c

v     
(12)

There may be some uncertainty in the data for the dis-
tances measured by the sensors. The uncertainty can be 
encoded with variation in iv . Then uncertainty of prior 
information having a peak width of iv  and the distances 
of the real obstacles from the centre of the peak in terms 
of iv  may be clubbed together. Furthermore, a specific 
priority can be assigned intentionally to a particular task 
by assigning different values as weights to ic . In this 
approach, all the vehicles share the common  map Mp 
(x1,x2) at every iteration. The vehicle (controller) sensor 
samples the Cartesian plane to get information on updat-
ed positions of obstacles and other vehicles and derive 
the drive command. The output is in the form of binary 
i.e. an output of 0 means no obstacle or and an output of 
1 means an obstacle in near proximity. 

1 2( , ) =tM x x 1,
  

[ ] { }1 21 2, , ∈  
TT i i

t tx x x x
             (13)

                        	= 0 otherwise

Emphasis has been given on moving the vehicles in 
discrete steps as if moving from cell to cell rather than  
moving  along  a  smooth curve. Random velocities have 
been assigned to the vehicles. No restriction has been im-
posed on maximum angle of rotation in one step but in 
reality a sharp turn may adversely affect the stability of 
the vehicles. This problem can be redressed by slowing 
down the vehicles.

For most of the practical situations, a vehicle located 
somewhere in the terrain is unable to locate all the ob-
stacles and other vehicles at a time. In order to account 
for this inability, an artificial perturbation has been added 
to the output vector [9, 10]. The problem can now be 
formulated by slightly modifying the above-mentioned 
kinematic problem:

1 1

2 2

( 1) ( ) cos( ( ) )

( 1) ( ) sin( ( ) )

( 1) ( )

λ θ β
λ θ β

θ θ β

   + + +
   + = + + ≠   
   + +   

i i i i
v v v k
i i i i
v v v k
i i i
v v k

x k x k k T

x k x k k T

k k T

          

(14)

The nonlinear function f of the previous model has 
been reduced to a linear incremental function having 
a step increment in sample time T and λ is the minimum 
incremental distance that any vehicle traverses before 
scanning its world map for the next time slot, i

kβ is the 
steering angle and ( )i

v kθ is the orientation with respect to 
X-axis for the last update.

So the concise form of the model for positional and 
angular updating is given as: 

{ }1 2 1 2( 1), ( 1) ( 1), ( 1) ,   + + = Γ + +   
i i i i i
v v v v kx k x k x k x k u    (15)

where 1
i
vx (k+1) and 2

i
vx (k+1) are the updated states of  

X-Y coordinates in the Cartesian coordinate system at 
time t for the of the ith vehicle and i

ku  is the drive com-
mands generated by the controller – the minimal posi-
tional and steering rate update at Tth discrete sample time, 
where Γ is the mapping function. The goal of vehicle 
coordination is to derive a sequence of controls for each 
vehicle i.e.

                       { }0 1, ,....,=i i i i
ku u u u                        (16a)

such that the trajectories are:

                       { }0 1, ,....=i i i i
nx x x x 		  (16b)

4.	 The real-time problem taken for path 
optimization 

 The specific scenario and the considerations behind 
experimentations and finding out the simulation results 
are worth mentioning at this point. Four vehicles paired 
in two different groups have been considered – they have 
set out for  two different targets of same preference.
•	 There are eight obstacles randomly generated in the 

workspace whose locations can be traced out by the 
sensors of the distributed controlling mechanism of 
each individual vehicle.
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•	 Each vehicle can sense their present location in Car-
tesian X-Y coordinate system while- they also have 
prior information about their starting locations.

•	 The controller of each vehicle can communicate with 
that of other vehicles and can distinguish between a 
moving object and a static obstacle.

Against these considerations in the backdrop, the real 
time algorithm used in this experimentation has been 
framed. Three functions have been taken: one for obsta-
cle generation, a Gaussian profile function to get estimate 
of the obstacle positions and a goal function to find out 
the best possible position and orientation for gradually 
getting nearer to the goal.

 
4.1. The proposed algorithm

Three functions have been used in this multi-vehicle 
path planning viz. ‘obstaclegeneration’, ’obstaclefunc’, 
and ‘goalfunc’ along with the main program.

Main Algorithm
Step 1: Segregate the 360o contour of the robots world 

map into N no. of segments.
Step 2: Do while count<preset value
Step 3: Loop for K=1 to N (incrementing step angle), 

calculate the Gaussian profile obstacle distance from 
each point of the circular trajectory by calling the func-
tion ‘obstaclefunction’ and find the furthest obstacle dis-
tances from each point and follow the same for finding 
the Euclidian distance to goal from all of those points by 
calling the function ‘goalfunction’.

Step 4:  Add the return array functions so as to treat 
this function as a composite one. 

Step 5: Minimize the composite function so as to get 
the best angle to move.

Step 6: Orient the robot towards that best found direc-
tion and move minimum incremental distance i.e. pro-
ceeding cell by cell (as if repulsed by the random ob-
stacles and attracted towards the goal).  

Step 7:  Repeat step 2 to step 5 for all subsequent ro-
bots. 

Reactive Behavior Scheme:
Step 8: Loop for i = 1 to 3
Step 9:  While 

,x yiRobot or 
,1+ x yiRobot ≠ ,x yGoal  do

Step 10:  If  
, ,1 2− ≤

x y x y
Robot Robot predefined thresold  

give either an X-axis shift or Y-axis shift accordingly.
Step 11: Endwhile
Step 12: Endfor
Add Artificial Perturbation 
Step 13: generate delta-increment and delta-angle by 

random function generation
Step 14:  Add them with goal function and obstacle 

function array
Step 15: Go back to step 2
Step 16: End-while
Analysis:  
As it can now be seen that the above algorithm shares 

similarities with the approach of Artificial Potential Field 
algorithm, first proposed by O. Khatib classically for sta-
tionary obstacles and goals. In the present problem the 
obstacles are generated randomly but after that they are 
stationary for the entire run. There is also a reactive be-
havior amongst the motions of the robots as each robot 
considers the others like obstacles and keep safe distance 
as well as a specific formation. The reactive behavior is 

also exhibited while the robots are repulsed from the ob-
stacles. The troop is also attracted towards the goal more 
aggressively than they are being repulsed from the obsta-
cles. This weighted approach is taken to find nearer space 
to global optimal solution while optimizing the composi-
tion of the goal function and maximum distance Gaus-
sian profile obstacle function. The higher aggression to 
reach the goal reduces the probability of being confined 
to local minima and forces it to follow a much straighter 
path as can be seen from the traced out paths of the robots 
through the resulting diagrams (viz. Fig 6 and Fig 9).

Three functions have been used in this multi-vehicle 
path planning viz. ‘obstaclegeneration’, ’obstaclefunc’, 
and ‘goalfunc’ along with the main program.

The main program executes the simulation loop of 
the constrained optimization problem and derives drive 
commands for the troop. The pseudo-code of the main 
program is given below: 

loop for i=1 to size(sampled contour) %  Starting of 
the Main Program     

theta(i,1)  ¬ theta(i-1,1) + angular increment
end of loop

Set xgoal 1,2¬ assign goal coordinates 1,2   % Assign 
two goals and four initial locations

Set initial1,2,3,4¬ assign initial locations coordinate 1,2,3,4 

                             % of the vehicles
Call obstaclegeneration function           % to generate 

eight random obstacles and to display                                                                                    
Loop for k=1 to size(iterations)
  Set x1,2,3,4(min,max) ¬ Workspace(min,max)       % to keep 

vehicles within the workspace
 Loop for m=1 to size(sampled contour) 
 Xs1,2,3,4(:,m) ¬ x1,2,3,4 (rows,k)+increment(rad,thetam)
Go(m,1) 1,2,3,4¬ call obstaclefunc(Xs1,2,3,4(:,m),w1)
Gg(m,1) 1,2,3,4¬ call goalfunc(Xs1,2,3,4 

(:,m),xgoal1,2,3,4,w2)
 Ggo(m,1) 1,2,3,4¬ Go(m,1) 1,2,3,4+ Gg(m,1) 1,2,3,4
 End of inner loop
minvalue1,2,3,4¬ min(Ggo(m,1)1,2,3,4   % minimum 

value and its sequence
minvalueseq1,2,3,4¬ sequence(min(Ggo(m,1) 1,2,3,4)
x1,2,3,4(rows,k+1)¬ x1,2,3,4(rows,k)+ increment(incr, 

theta(minvalueseq1,2,3,4)
 deltaincr ¬ 0.1*incr*random generaration        % 

To generate artificial pertubation
 deltaangle ¬ 2*pi* random generaration
x1,2,3,4 (rows,k+1)¬ x1,2,3,4(rows,k+1)+increment(delta

incr,theta(deltaangle))
Loop i=1 to (number of vehicles-1)   % Formation & 

Coordination amongst the vehicles 
delta1,2,3¬  xi+1(x,y)-xi(x,y)
if (delta<mags(safedistance) then xi(x,y) ¬ xi(x,y)+shift
Plot online path tracing
End of last inner loop 
End of the main simulation loop 
Plot some results of the troop movement                                     
 End of the Main Program     
Three functions were called from the main program 

of which the first one is obstacle generation. This func-
tion has not taken any input from the main program and 
not also returned any value but generates eight random 
obstacles in the world map of the vehicles. 
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Fig. 2. Four vehicles just about to start in two different 
groups in the given workspace                                

Fig. 3. Input obstacle functions estimated from the sam-
pled workspace

Fig. 4. Upper left goal function estimated from the sam-
pled workspace

Fig. 5. Upper right goal function estimated from the sam-
pled workspace

Fig. 6. Online tracing of the traversed path of four  ve-
hicles to two goals in a group of two

Fig. 7. Output vector from goal optimizing function for 
every iteration

Fig. 8. Output vector from weighted combination of Gaussian 
profile (obstacles) optimizing and goal optimizing function

5.	 Simulation results
The results obtained from the simulations are given in 

this section. Fig. 2 shows four vehicles at their starting 
points. Fig. 3 shows the input obstacle functions of the 
workspace. Fig. 4 shows the  upper left and Fig. 5 the 
upper right goal functions estimated from the sampled 
workspace  Fig. 6 shows the online tracing of the tra-
versed path Fig. 7  shows the output vector from goal 
optimizing function  Fig. 8 shows the output vector from 
weighted combination of Gaussian profile (obstacles) 
optimization and Fig. 9 shows the final paths traced out 
by the vehicles 
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6.	 Conclusions
There  are  many  open  issues  in multi-vehicle  path  

planning  and  coordination  which are yet to  be ad-
dressed. Currently used techniques are not suitable for 
very large number of vehicles and for 3-D trajectories 
(aerial vehicles). Another difficulty is faced in practical 
implementation of the real time mobile vehicles. It re-
quires incorporating practical motion and sensing con-
straints of physical vehicles in 2-D space. As already 
mentioned this technique is an application of Artificial 
Potential Field Approach in static environment. This ap-
proach could be extended to control and coordination of 
mobile vehicles in highly stochastic and dynamic envi-
ronment but that would be a slight deviation from clas-
sical APF and its complexity is higher. It may require 
online path planning and coordination strategies. 

Motion coordination of multiple vehicles in a shared 
workspace has large scale practical values. Example 
applications include container management in ports, 
extra-planetary explorations, search and rescue, mineral 
mining, transportation, industrial and household mainte-
nance, construction, hazardous waste cleanup, security, 
agriculture, and warehouse management. Due to com-
plexity and cost, relatively few real-world implementa-
tions of these systems have been accomplished till date. 
It is expected that such systems will have wide-spread 
use in near future as the technology continues to mature. 

Because of the need for motion coordination of multi-
vehicle systems, the work described in this paper is of 
critical importance. As multi-robot systems can operate 
in stochastic and unpredictable settings, the study of the 
interaction dynamics of these settings may have broader 
impact in a wide range of applications. 	 One possi-
ble solution of multi-vehicle problem has been presented 
in this paper. The task is to find out the optimal path 
towards goals avoiding obstacles by learning through 
random search in an unknown environment. A Gaussian 
Profile Map function optimally directs the vehicles away 
from the obstacles as if the Robots are repulsed from the 
obstacles. The vehicles are more aggressive towards the 
goals rather than to the obstacle avoidance phenomenon 
in this project. The time taken by the troop to reach two 
different goals in two pairs is less than a minute as being 

observed. This algorithm, if compared with others, the 
time efficiency could be found to be better to some ex-
tent. The obstacles are not dynamic in the present work 
but they may be stochastically generated at any location 
in the workspace. Moreover the troop is to maintain for-
mation and coordination amongst themselves. A com-
prehensive result has been achieved by simulating the 
algorithm in MATLAB® environment. In highly stochas-
tic environment, a more robust and adaptive algorithm 
may be required. Application of Neuro-Fuzzy or Neuro-
GA system could be very useful in this context. 

A simple algorithm based on random search has been 
used which is very easy to implement. It is based on APF 
approach and also shares some similarities with evolu-
tionary computation techniques. The system is initial-
ized with a population of random solutions and searches 
for optima by updating generations. The potential solu-
tions, in this algorithm fly through the problem space 
following current optimal output. They are taken as the 
optimally best possible directives for movement of each 
individual vehicle. The controller updates the param-
eters in accordance with the optimal directives gener-
ated by the algorithm. Still then, for very complicated, 
dynamic and stochastic environments an expert system 
with leader-follower architecture may be even a better 
alternative.
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