PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of LiF : Mg,Cu,P (MCP-N) thermoluminescent detectors (TLD) for experimental verification of radial dose distribution models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference on Development and Applications of Nuclear Technologies NUTECH-2011, 11-14 September 2011, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
In track structure theory, the radial distribution of dose, D(r), around an ion track plays a fundamental role in predicting the response of biological systems and physical detectors after a dose (or fluence) of ions. According to the formulations of D(r), the local dose at radial distances below 1 nm can reach values as high as 106 Gy. We propose a new method of verifying experimentally the radial dose distribution around alfa-particle tracks, using LiF:Mg,Cu,P (MCP-N) thermoluminescent detectors (TLD) which are able to measure gamma-ray doses in the kGy range via evaluation of their high-temperature TL glow peak structure over the temperature range of 350–550 centigrade. MCP-N detectors were irradiated with Am-241 alfa-particles at fluences ranging from 107 to 1011 particles/cm2, and by Co-60 gamma-ray doses ranging from several Gy up to the MGy. A number N of individual high-temperature TL peaks were analysed in the obtained glow curves by deconvolution, using the GlowFit code. For each of these peaks, an equation relating the intensity, A, of the TL signal obtained after alfa-particle irradiation and after gamma-ray doses, via the dose-frequency function, f alfa(D), was written in the form: A i alfa = integral A i gamma(D)x f alfa (D)dD, i 1,.., N. Using this set of N equations, where A alfa i and A gamma i(D) were known (measured), the single unknown function f alfa(D) was unfolded and converted to D(r). Parametric unfolding and the SAND-II iterative code were applied. While we were able to confirm the 1/r2 dependence of D(r) in agreement with D(r) expressions, we were unable to conclusively evaluate the dependence of D(r) at intermediate ranges of radial distance r. This preliminary result of our unique experimental approach to determine the radial dose distribution around the path of heavy charged particles in LiF detectors, requires further development.
Czasopismo
Rocznik
Strony
507--512
Opis fizyczny
BIbliogr. 14 poz., rys.
Twórcy
autor
autor
autor
autor
autor
autor
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8490, Fax: +48 12 662 8066, Wojciech.Gieszczyk@ifj.edu.pl
Bibliografia
  • 1. Bilski P, Obryk B, Olko P, Mandowska E, Mandowski A, Kim JL (2008) Characteristics of LiF:Mg,Cu,P thermoluminescence at ultra-high dose range. Radiat Meas 43:315–318
  • 2. Geiss OB, Kramer M, Kraft G (1998) Efficiency of thermoluminescent detectors to heavy charged particles. Nucl Instrum Methods Phys Res B 142:592–598
  • 3. Horowitz YS, Stern N (1990) Relative thermoluminescent efficiency of LiF:Mg,Cu,P to alpha particles: theory and experiment. Radiat Prot Dosim 33:287–290
  • 4. Katz R (1978) Track structure theory in radiobiology and in radiation protection. Nucl Track Detect 2:1–28
  • 5. Krämer M (1995) Calculations of heavy-ion track structure. Nucl Instrum Methods Phys Res B 105:14–20
  • 6. McElroy WN, Berg S, Crockett T, Hawkins RG (1967) A computer automated iterative method for neutron flux spectra determination by foil activation. AFWL-TR-67-41
  • 7. Obryk B (2010) Development of a method of high dose measurement using highly sensitive LiF:Mg,Cu,P detectors.PhD thesis, Institute of Nuclear Physics PAN, Kraków. IFJ Report no. 2045/D (in Polish). http://www.ifj.edu.pl/publ/reports/2010/2045.pdf
  • 8. Obryk B, Bilski P, Budzanowski M et al. (2009) Development of a method for passive measurement of radiation doses at ultra-high dose range. IEEE Trans Nucl Sci 56:3759–3763
  • 9. Olko P (1996) Microdosimetric interpretation of thermoluminescence efficiency of LiF:Mg,Cu,P (MCP-N) detectors for weakly and densely ionizing radiations. Radiat Prot Dosim 65:151–158
  • 10. Olko P, Bilski P, Gieszczyk W, Grzanka L, Obryk B (2011) Microdosimetric analysis of response of LiF:Mg,Cu,P (MCP-N) TL detectors for alpha-particle and ultra-high doses of gamma-rays. Radiat Meas 46;12:1349–1352
  • 11. Puchalska M, Bilski P (2006) GlowFit – a new tool for thermoluminescence glow-curve deconvolution. Radiat Meas 41:659–664
  • 12. Scholz M, Kraft G (1996) Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res 18:5–14
  • 13. Waligórski MPR, Hamm RN, Katz R et al. (1986) The radial distribution of dose around the path of a heavy ion in liquid water. Nucl Tracks Radiat Meas 11;6:309–319
  • 14. Zhang C, Dunn DE, Katz R (1985) Radial distribution of dose and cross-sections for the inactivation of dry enzymes and viruses. Radiat Prot Dosim 13:215–218
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.