PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wettability of carbon and silicon carbide ceramics induced by their surface alloying with Zr and Cu elements using high intensity pulsed plasma beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference on Development and Applications of Nuclear Technologies NUTECH-2011, 11-14 September 2011, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
Joining of metals with ceramics is very difficult, because properties of these materials are very different. One of the methods of improving mechanical strength of the obtained joints is the introduction of an additional interlayer to the joining area. This paper presents the Zr and Cu-rich layers in C and SiC substrates obtained using the high intensity pulsed plasma beams method. The results of Zr plasma modifications were beneficial and similar to the results obtained in previous works with Ti. The measured contact angles were below 90 centigrade. The results with Cu plasma were unfavourable with contact angles close to 180 centigrade. Apart from the sessile-drop test and to extend the range of analysis, the investigated samples were examined by stereoscopic optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), grazing angle X-ray diffraction (GXRD), and Rutherford back scattering (RBS) measurements.
Czasopismo
Rocznik
Strony
477--483
Opis fizyczny
BIbliogr. 24 poz., rys.
Twórcy
autor
autor
autor
autor
autor
autor
  • National Centre for Nuclear Research (NCBJ), 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland, Tel.: +48 22 718 0644, Fax: +48 22 779 3, barlak@ipj.gov.pl
Bibliografia
  • 1. Barlak M (2010) High intensity plasma pulses in ceramic wettability improvement. The Andrzej Sołtan Institute for Nuclear Studies, Otwock/Świerk
  • 2. Barlak M, Piekoszewski J, Werner Z et al. (2009) The influence of distribution of titanium alloyed into carbon ceramics by the intense plasma pulses on their surface wettability with liquid copper. Vacuum 83:S81–S85
  • 3. Barlak M, Piekoszewski J, Werner Z et al. (2009) Wettability improvement of carbon ceramic materials by mono and multienergy plasma pulses. Surf Coat Technol 203:2536–2540
  • 4. Berner A, Fuks D, Ellis DE, Mundim K, Dorman S (1999) Formation of nano-crystalline structure at the interface in Cu-C composite. Appl Surf Sci 144/145:677–681
  • 5. Dorfman S, Fuks D (1997) Formation and relative stability of interstitial solid solutions at interfaces in metal matrix composites. Mater Design 18:333–337
  • 6. http://www.simnra.com
  • 7. Kang H-K, Kang SB (2006) Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit. Mat Sci Eng A 428:336–345
  • 8. Köck T, Brendel A, Bolt H (2007) Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites. J Nucl Mater 362:197–201
  • 9. Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry, 5th ed. Pergamon Press, Oxford
  • 10. Liang Y, Dutta SP (2001) Application trend in advanced ceramic technologies. Technovation 21:61–65
  • 11. Luo X, Yang Y, Li J, Yuan M, Huang B, Chen Y (2008) An analysis of thermal residual stresses in SiCf/Cu composites when TiC or Ni as binder. Mater Design 29:1755–1761
  • 12. Narayan RJ (2005) Laser processing of diamond-like carbon-metal composites. Appl Surf Sci 245:420–430
  • 13. Neubauer E, Korb G, Eisenmenger-Sittner C et al. (2003) The influence of mechanical adhesion of copper coatings on carbon surfaces on the interfacial thermal contact resistance. Thin Solid Films 433:160–165
  • 14. Nicholas MG (1996) Joining of ceramics. In: Material science and technology. Cahn RW, Haansen P, Kramer EJ (eds) Vol. 17B: Processing of ceramics, Part II. Wiley, New York, p 262
  • 15. Qin D, Shen C, Wang H, Guan L, Zhang R (2007) Preparation of SiC-SiO2-CuO composites. J Mater Sci 42:7457–7460
  • 16. Qin Y, Yu Z (2010) Joining of C/C composite to TC4 using SiC particle-reinforced brazing alloy. Mater Charact 61:635–639
  • 17. Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175:364–375
  • 18. Seal S, Warwick T, Sobczak N, Morgiel J (2000) A scanning photoemission microscope (SPEM) to study the interface chemistry of AlTi/C system. J Mater Sci Lett 19:123–126
  • 19. Suganuma K (1990) Recent advances in joining technology of ceramics to metals. ISIJ Int 30:1046–1058
  • 20. Szymczyk W, Piekoszewski J, Werner Z, Szyszko W (2002) Thermal evolution of solid targets irradiated by pulsed plasma beams. Nukleonika 47:163–166
  • 21. Szyszko W, Vega F, Afonso CN (1995) Shifting of the thermal properties of amorphous germanium films upon relaxation and crystallization. Appl Phys A 61:141–147
  • 22. Tillman W, Lugscheider E, Xu R, Indacochea JE (1996) Kinetic and microstructural aspects of the reaction layer at ceramic/metal braze joint. J Mater Sci 31:445–452
  • 23. Wang Z, Wynblatt P (1998) Study of a reaction at the solid Cu/α-SiC interface. J Mater Sci 33:1177–1181
  • 24. Włosiński W (1999) The joining of advanced materials. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.