PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of neutron activation for investigation of Fe3O4 nanoparticles accumulation by plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a result of the rapid development of nanotechnology and increasing application of nanoproducts in many areas of everyday life, there is a growing risk of production of nanowastes potentially dangerous for the environment. This makes it necessary to investigate the accumulation and toxicity of nanoparticles (NPs) at different trophic levels. In the studies neutron activation was applied for the investigation of iron (II,III) oxide nanoparticle (Fe3O4-NPs) accumulation by Lepidium sativum and Pisum sativum L. Plants were cultivated on growth medium contaminated with different concentrations (0.01-10 mmolźL-1) of Fe3O4-NPs. For the identification of the presence of Fe3O4-NPs in plant tissues gamma spectrometry following iron oxide (II,III) nanoparticles irradiation was applied. Both plant species were found to accumulate iron (II,III) oxide nanoparticles. The highest content of NPs was found in plant roots, reaching 40 g/kg for Pisum sativum L. More than 90% of accumulated NPs were found in roots. Accumulation of Fe3O4-NPs was found to depend on the concentration of nanostructures in the growth medium. The transfer factor for Lepidium sativum roots and shoots and Pisum sativum L. shoots decreased with increasing NP concentration in the medium; for Pisum sativum L. roots the tendency was reversed. Neutron activation of nanoparticles was shown to be a powerful tool for tracing the environmental fate of NPs and their uptake and accumulation in organisms.
Czasopismo
Rocznik
Strony
427--430
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
autor
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel.: +48 22 554 2300, Fax: +48 22 554 2302, byst@biol.uw.edu.pl
Bibliografia
  • 1. Abhilash KR, Pandey BD (2011) Microbial synthesis of iron-based nanomaterials – a review. Bull Mater Sci 34;2:191–198
  • 2. Bystrzejewska-Piotrowska G, Golimowski J, Urban L (2009) Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage 29;9:2587–2595
  • 3. Fu L, Dravid VP, Johnson DL (2001) Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles. Appl Surf Sci 181:173–178
  • 4. Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Superparamagnetic iron oxide nanoparticles for bio-medical application. J Magn Magn Mater 225:256–261
  • 5. Kim DK, Zhang Y, Voit W et al. (2001) Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scripta Mater 44:1713–1717
  • 6. Nanonet website, http://www.nanonet.pl
  • 7. Oughton DH, Hertel-AAS T, Pollicer E, Mendoza E, Joner EJ (2008) Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxic Chem 27;9:1883–1887
  • 8. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5;1:30–42
  • 9. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.