Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to evaluate the effect of the size of gold nanoparticles (GNPs) on dose enhancement in brachytherapy with photon emitting sources. Four photon emitting sources, 125I, 169Yb, 103Pd, and 192Ir were simulated and dose rate constant and radial dose functions were compared with published corresponding data for these sources. Dose enhancement factor in the presence of gold nanoparticles of 30 mg/ml concentration was calculated separately for nanoparticles with a diameter of 50, 100 and 200 nm. Gold nanoparticles were simulated precisely as nanospheres utilizing a lattice option in the MCNPX Monte Carlo code and the results were compared with those obtained with a simple model in which gold atoms are distributed uniformly in tumor volume as a simple mixture. Among the four mentioned sources, the dose enhancement related to 125I source is higher. Our results have shown that with gold nanoparticles of higher diameter, the level of dose enhancement is higher in the tested tumor. It has been also observed that the simple model overestimates the dose enhancement factor when compared with the precise model in which nanoparticles are defined according to the Monte Carlo code. In the energy range produced by the brachytherapy sources, the dose enhancement is higher when using brachytherapy sources with lower energy. Among the size range of gold nanoparticles used in medicine, it is predicted that nanoparticles with higher diameter can be more useful when are utilized in brachytherapy. It is also recommended that when calculating dose enhancements, a precise model be used for modelling of nanoparticles in the Monte Carlo simulations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
401--406
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
autor
autor
autor
- Iranian Applied Research Center for Public Health and Sustainable Development (IRCPHD), North Khorasan University of Medical Sciences, Bojnurd, Iran, Tel.: +98 584 222 1910 ext. 193, Fax: +98 584 223 7076, mhdghorbani@gmail.com
Bibliografia
- 1. Bahreyni Toossi MT, Ghorbani M, Mowlavi AA et al. (2010) Air kerma strength characterization of a GZP6 cobalt-60 brachytherapy source. Rep Pract Oncol Radiother 15:190–194
- 2. Berbeco RI, Ngwa W, Makrigiorgos GM (2011) Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy. Int J Radiat Oncol Biol Phys 81;1:270–276
- 3. Cazaca MJ, Medich DC, Munro JJ III (2010) Monte Carlo characterization of a new Yb-169 high dose rate source for brachytherapy application. Med Phys 37;3:1129–1136
- 4. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6;4:662–668
- 5. Cho S, Jeong JH, Kim ChH, Yoon M (2010) Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J Korean Phys Soc 56;6:1754–1758
- 6. (2009) The dosimetric Cho SH, Jones BL, Krishnan S feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma/X-ray sources. Phys Med Biol 54;16:4889–4905
- 7. Daskalov GM, Williamson JF (2001) Monte Carlo-aided dosimetry of the new Bebig IsoSeed® 103Pd interstitial brachytherapy seed. Med Phys 28;10:2154–2161
- 8. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49;18:309–315
- 9. Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364
- 10. http://vali.physics.carleton.ca/clrp/seed_database/I125/OncoSeed_6702/ Accessed September 27, 2011, Carleton University
- 11. http://vali.physiscs.carleton.ca/clrp/seed_database/Pd103/IsoSeed_Pd-103/ Accessed September 27, 2011, Carleton University
- 12. http://vali.physics.carleton.ca/clrp/seed_database/Ir192_HDR/SPEC_M19/ Accessed September 27, 2011, Carleton University
- 13. ICRU (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU Report no. 44. International Commission on Radiation Units and Measurements, Bethesda, MD
- 14. Iwamoto KS, Cochran ST, Winter J, Holburt E, Higashida RT, Norman A (1987) Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumors. Radiother Oncol 8:161–170
- 15. Leung MK, Chow JC, Chihrani BD, Lee MJ, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38;2:624–631
- 16. Li Z, Palta JR, Fan JJ (2000) Monte Carlo calculations and experimental measurements of dosimetry parameters of a new 103Pd source. Med Phys 27;5:1108–1112
- 17. Medich DC, Munro JJ III (2007) Monte Carlo characterization of the M-19 high dose rate Iridium-192 brachytherapy source. Med Phys 34;6:1999–2006
- 18. Mello RS, Callison H, Winter J, Kagan AR, Norman A (1983) Radiation dose enhancement in tumors with iodine. Med Phys 10:75–78
- 19. Mesa AV, Norman A, Solberg TD, DeMarco JJ, Smathers JB (1999) Dose distribution using kilovoltage X-ray and dose enhancement from iodine contrast agents. Phys Med Biol 44:1955–1968
- 20. Nath R, Anderson LL, Luxton G et al. (1995) Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group no. 43. Med Phys 22:209–234
- 21. Rahman WN, Bishara N, Ackerly T et al. (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5;2:136–142
- 22. Ranjbar H, Shamsaei M, Ghasemi MR (2010) Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles. Nukleonika 55;3:307–312
- 23. Rivard MJ, Coursey BM, DeWerd LA et al. (2004) Update of AAPM Task Group no. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys 31;3:633–674
- 24. Roa W, Zhang X, Guo L et al. (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 20;37:375101
- 25. Generation and Robar JL (2006) modelling of megavoltage photon beams for contrast-enhanced radiation therapy. Phys Med Biol 5;21:5487–5504
- 26. Robar JL, Riccio SA, Martin MA (2002) Tumor dose enhancement using modified megavoltage photon beams and contrast media. Phys Med Biol 47:2433–2449
- 27. Rose JH, Norman A, Ingram M (1994) First experience with radiation therapy of small brain tumors delivered by a computerized tomography scanner. Int J Radiat Oncol Biol Phys 30:24–25
- 28. Van den Heuvel F, Locquet JP, Nuyts S (2010) Beam energy considerations for gold nanoparticle enhanced radiation treatment. Phys Med Biol 55;16:4509–4520
- 29. Verhaegen F, Reniers B, Deblois F, Devic S, Seuntjens J, Hristov D (2005) Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt X-rays. Phys Med Biol 50:3555–3569
- 30. Waters LS (2000) MCNPX User’s Manual, Version 2.4.0. Report LA-CP-02-408, Los Alamos National Laboratory
- 31. Williamson JF, Quintero FJ (1988) Theoretical evaluation of dose distributions in water models 6711 and 6702 125I seeds. Med Phys 15:891–897
- 32.Zhang SX, Gao J, Buchholz TA et al. (2009) Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed Microdevices 11;4:925–933
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0024