PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Working parameters of the electron - beam-generated ion source for ISOL facilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An electron-beam generated plasma (EBGP) ion source for nuclear spectroscopy purposes at YASNAPP (YAdernaya Spektroskopya NA Putchkah Protonov - nuclear spectroscopy using proton beams) isotope separation on-line facility is presented. Working conditions both in on- and off-line mode are presented and discussed. Formation of a potential trap inside a discharge chamber is an advantage of the presented construction, enabling relatively high ionization efficiencies (2-5%) even for hard-to-ionize elements like Be, Ti, V, Zr, Nb, Mo, Tc, Ru, Rd, Hf, Ta, W, Re, Os, Ir, Pt. The paper presents estimation of critical values of working parameters that enable formation of the ion trap leading in consequence to high efficiency of ionization. The optimal temperature of the discharge chamber and cathode walls is found to be in the range 2600-2800 K. Calculations of the output rates of ions produced in the on-line mode are also presented as well as the constraints on the half-life time of obtained nuclides imposed by construction details like the target material and its thickness.
Czasopismo
Rocznik
Strony
351--356
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
autor
autor
autor
  • Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Moscow region, Russia
Bibliografia
  • 1. Afanasev VP (1979) Alpha decay of short-lived rare earth’s isotopes. Preprint LINP-532 (in Russian)
  • 2. Afanasev VP, Obukhov VA (1978) Emission of radioactive nuclei from the target of a surface ionization source during on-line operation of mass separator. Preprint JINR Dubna P13-11698 (in Russian)
  • 3. Alton GD, Liu Y, Stracener DW (2006) High-efficiency target ion sources for radioactive ion beam generation. Rev Sci Instrum 77:03A711–03A715
  • 4. Arlt R, Bystrov VA, Harenicht W et al. (1972) Isobars from the spallation reaction for nuclear spectroscopy. Nucl Instrum Methods 102:253–256
  • 5. Beyer GJ, Herrmann E, Piotrowski A et al. (1971) A new method for rare-earth isotope separation. Nucl Instrum Methods 96:437–439
  • 6. Bricault P, Ames F, Achtzehn T et al. (2008) An overview on TRIUMF’s developments on ion source for radioactive beams. Rev Sci Instrum 79:02A908–02A912
  • 7. Cheikh Mhamed M, Lau C, Essabaa S (2008) Two-dimensional/three-dimensional simulations for the optimization of an electron-beam-generated-plasma-based-type ion source. Rev Sci Instrum 79:02B911–02B913
  • 8. Dushman S (1962) Scientific Foundation of Vacuum Technique. John Wiley & Sons, New York
  • 9. Ehrlich G, Kirk C (1968) Binding and field desorption of individual tungsten atoms. J Chem Phys 48:1465–1470
  • 10. Eléon C, Jardin P, Gaubert G et al. (2008) Development of a surface ionization source for the production of radioactive alkali ion beams in SPIRAL. Nucl Instrum Methods B 266:4362–4367
  • 11. Gromov KY, Kalinnikov VG, Tsupko-Sitnikov VM (1987) ISOL – facility YASNAPP-2. AIP Conf Proc 164:853–856
  • 12. Huyse M (1983) Ionization in a hot cavity. Nucl Instrum Methods 215:1–5
  • 13. Kirchner R (1990) On the thermoionization in hot cavities. Nucl Instrum Methods A 292:203–205
  • 14. Koizumi M, Osa A, Oshima et al. (2003) A laser ion source with a thin ohmic-heating ionizer for the TIARA-ISOL. Nucl Instrum Methods B 204:359–362
  • 15. Latuszyński A, Pyszniak K, Droździel A et al. (2007) Atom ionization process in the thermoionization ion source. Vacuum 81:1150–1153
  • 16. Latuszyński A, Zuber K, Zuber J et al. (1974) Method of electromagnetic separation of radioactive isotopes of rare-earth elements directly from targets. Nucl Instrum Methods 120:321–328
  • 17. Lau C, Cheikh Mhamed M, Essabaa S (2008) Status of ionization by radial electron neat adaptation ion source research and development for SPIRAL2 and EURISOL-DS. Rev Sci Instrum 79:02A903–02A905
  • 18. Menna M, Catherall R, Lettry J et al. (2008) R&D for the development of negative ion beams of halogens. Nucl Instrum Methods B 266:4391–4393
  • 19. Mustapha B, Nolen JA (2004) Simulations of effusion from ISOL target/ion source systems. Nucl Instrum Methods A 521:59–64
  • 20. Nitschke JM (1985) An electron-beam-generated-plasma ion source for on-line isotope separation. Nucl Instrum Methods A 236:1–16
  • 21. Obukhov VA, Raiko VI (1986) Production of ions of short-lived isotopes. Atom Energy 60:139–146
  • 22. Osa A, Ichikawa S, Matsuda M et al. (2008) Ion source development for the on-line isotope separator at JAEA. Nucl Instrum Methods B 266:4394–4398
  • 23. Panteleev VN (2004) Recent ion source developments for production of radioactive beams. Rev Sci Instrum 75:1602–1606
  • 24. Shmor PW (2002) Ion sources for radioactive ion beams in ISOL facilities. Rev Sci Instrum 73:707–710
  • 25. Sokol’skaya IA, Zubenko YV (1966) Studies of gold adsorption on tungsten surface at the electron microscope with field emission. Proc USSR Academy of Sciences, Physics Series 30:1921–1929 (in Russian)
  • 26. Table of Periodic Properties of the Elements (1968) Sargent-Welch Scientific Co, Skokie, Illinois, USA (Catalog no. S-18806)
  • 27. Turek M, Pyszniak K, Droździel A et al. (2008) Ionization efficiency calculations for cavity thermoionization ion source. Vacuum 82:1103–1106
  • 28. Turek M, Pyszniak K, Droździel A (2009) Influence of electron impact ionization on the efficiency of thermoemission ion source. Vacuum 83:S260–S263
  • 29. Zhang Y, Alton GD (2005) Monte-Carlo simulation of complex vapor-transport systems for RIB applications. Nucl Instrum Methods B 241:947–952
  • 30. Zubenko YV, Sokol’skaya IA (1962) Field emission of electrons from Au-Ba. Radiotechnics and Electronics 7:1467–1473 (in Russian)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.