PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Void fraction and flow regime determination by means of MCNP code and neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the non-intrusive and accurate methods of measuring void fraction in two-phase gas liquid pipe flows is the use of the gamma-transmission void fraction measurement technique. The goal of this study is to describe low-energy gamma-ray densitometry using an 241Am source for the determination of void fraction and flow regime in water/gas pipes. The MCNP code was utilized to simulate electron and photon transport through materials with various geometries. Then, a neural network was used to convert multi-beam gamma-ray spectra into a classification of the flow regime and void fraction. The simulations cover the full range of void fraction with Bubbly, Annular and Droplet flows. By using simulation data as input to the neural networks, the void fraction was determined with an error less than 3% regardless of the flow regime. It has thus been shown that multi-beam gamma-ray densitometers with a detector response examined by neural networks can analyze a two-phase flow with high accuracy.
Czasopismo
Rocznik
Strony
345--349
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
autor
autor
autor
autor
  • Physics Department, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • 1. Abro E, Johanson GA (1999) Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas Instrum 10:99–108
  • 2. Beatie DRH (1972) Two-phase flow structure and mixing length theory. Nucl Eng Des 21:46–64
  • 3. Briesmeister JF (1997) MCNP – A general Monte Carlo n-particle transport code. Version 4B. LA-126265, Los Alamos National Laboratory
  • 4. Cember H, Johnson ET (2009) Introduction to health physics, 4th ed. McGraw-Hill Medical, New York
  • 5. Haykin S (1999) Neural network, 2nd ed. MacMillan College Publishing Co, London
  • 6. Hewitt GF (1978) Measurement of two-phase flow parameters. Academic Press, New York
  • 7. Ishii M (1977) One-dimensional drift-flux model and constitutive equation for relative motion between phases in various two-phase flow regimes. ANL 77:37–47
  • 8. Lahey RT, Banerjee S (1980) Advances in two-phase flow instrumentation. In: Lewins J, Becker M (eds) Advances in nuclear science technology. Vol. 13. Plenum Press, New York, pp 227–401
  • 9. Levenberg K (1944) Method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164–168
  • 10. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM Appl Math 11:431–441
  • 11. Priddy KL, Keller PE (2005) Artificial neural networks: An introduction. SPIE Press, Bellingham, WA, p 1
  • 12. Sprowll RL, Phillips WA (1980) Modern physics, the quantum physics of atoms, solids and nuclei, 3rd ed. Wiley, New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.