Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a mathematical model which describes the adhesive contact between a linearly elastic body and an obstacle. The process is static and frictionless. The normal contact is governed by two laws. The rst one is a Signorini law, representing the fact that there is no penetration between a body and an obstacle. The second one is a Winkler type law signifying that if there is no contact, the bonding force is proportional to the displacement below a given bonding threshold and equal to zero above the bonding threshold. The model leads to a variational-hemivariational inequality. We present the numerical results for solving a simple two-dimensional model problem with the Proximal Bundle Method (PBM). We analyze the method sensitivity and convergence speed with respect to its parameters.
Czasopismo
Rocznik
Tom
Strony
115--136
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Institute of Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland, czepiel@ii.uj.edu.pl
Bibliografia
- [1] Brezzi F., Fortin M.; Mixed and hybrid nite element methods, Springer-Verlag, New York 1991.
- [2] Carl S.; Existence and comparison results for variational-hemivariational inequalities, Journal of Inequalities and Applications, 1, 2005, pp. 33{40.
- [3] Clarke F.H.; Optimization and Nonsmooth Analysis, Wiley Interscience, New York 1983.
- [4] Czepiel J., Kalita P.; On numerical solution for a variational-hemivariational inequality modeling a simplied adhesion of linearly elastic body, in preparation.
- [5] Franc V., Hlavac V.; A Novel Algorithm for Learning Support Vector Machines with Structured Output Spaces, Research Report K333 22/06, CTU-CMP-2006-04, 2006. Available via ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-TR-2006-04.ps.
- [6] Goeleven D., Motreanu D., Dumonte Y., Rochdi M.; Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume II: Unilateral Problems, Kluwer Academic Publishers, Dordrecht 2003.
- [7] Haslinger J., Miettinen M., Panagiotopoulos P.D.; Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Kluwer Academic Publishers,Dordrecht 1999.
- [8] Hintermüller M., Kovtunenko V., Kunisch K.; Obstacle problems with cohesion:a hemivariational inequality approach and its ecient numerical solution, SIAM Journal on Optimization, 21, 2011.
- [9] Kiwiel K.C.; Eciency of proximal bundle methods, Journal of Optimization Theory and Applications, 104, 2000, pp. 589-603.136
- [10] Kovtunenko V.; A hemivariational inequality in crack problems, Optimization, 1, 2010, pp. 1-19.
- [11] Liu Z.; On boundary variational{hemivariational inequalities of elliptic type, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 140, 2010, pp. 419-434.
- [12] Liu Z., Motreanu D.; A class of variational{hemivariational inequalities of elliptic type, Nonlinearity, 23, 2010, pp. 1741-1752.
- [13] Mäkelä M.M.; Nonsmooth Optimization, Theory and Applications with Applications to Optimal Control, PhD Thesis, Jyväskylä 1990.
- [14] Mäkelä M.M., Mietinen M., Luksan L., Vlcek J.; Comparing Nonsmooth Nonconvex Bundle Methods in Solving Hemivariational Inequalities, Journal of Global Optimization, 14, 1999, pp. 117-135.
- [15] Migorski S., Ochal A.; A unied approach to dynamic contact problems in viscoelasticity, Journal of Elasticity, 83, 2006, pp. 247-276.
- [16] Motreanu D., Winkert P.; Variational-hemivariational inequalities with nonhomogeneous Neumann boundary condition, Le Matematiche, 65, 2011, pp. 109-119.
- [17] Naniewicz Z., Panagiotopoulos P.D.; Mathematical theory of hemivariational inequalities and applications, CRC, 1995.
- [18] Panagiotopoulos P.D.; Variational-hemivariational inequalities in nonlinear elasticity.The coercive case, Applications of Mathematics, 33, 1988, pp. 249-268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0023-0006