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Introduction 

Electron-positron-dust/ion (e-p-d/i) plasmas can occur, 
e.g., in the inner region of accretion discs in the vicinity 
of black holes, in magnetospheres of neutron stars, in 
active galactic cores, and even in solar flare plasmas [2]. 
As for laboratory plasmas, it is known that p-e plasmas 
can be exited but do not allow life times sufficiently long 
for the excitation and developments of coherent struc-
tures like plasma waves and solitons. The annihilation 
time is short in comparison to the plasma period. This 
drawback is not present in the recently available long-
-lived pair plasmas composed of single charged fullerene 
pair plasma of molecules C+

60, C–
60, and electron-holes 

(e–, h+) in pure semiconductors also are pair plasmas if 
effective masses of electrons and holes are equal. 

We reduce the initial-value problem of the standard 
Vlasov-Ampère/Poisson system of equations for multi-
component plasmas, to the following multiple integral 
equation 

(1) 

where 
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Detailed derivation of Eq. (1) can be found in [1, 
4, 7]. 

Dispersion relations and exact solutions 

The space-time convolution Eq. (1) can be solved by 
the use of a resolvent kernel R(x, t). We shall write the 
solution as 

(2) 

where the kernel function K(x, t) and the resolvent 
R(x, t) satisfies the following resolvent equation 

(3) 

The last equation describes the plasma dynamic 
response R(x, t) and its only dependence on the plasma 
equilibrium distribution. On the ground of Eq. (3), we 
note the time reversibility and space reflexivity. The 
important point to note is that according to the Noether 
theorem the properties are strictly related to energy and 
momentum conservation laws. 

The time-Laplace and space-Fourier transforms of 
Eq. (3) lead to the usual dispersion relation of multi-
component plasmas – D(k, s) 

(4)                              and  

where D(k,s) is the Fourier-Laplace symbol. In the 
case of diffusive transport equation of oscillations, the 
relation has no meaning. It is worth pointing out that 
the resolvent equation is more universal description 
of multicomponent plasmas than the usual dispersion 
relation. 

Wave propagation 

The advantage of the integral equations of Vlasov plas-
mas consists in obtaining the solutions separately com-
posed of the forcing function G(x, t) resulting from the 
initial value disturbance g(u, x) and the resolvent kernel 
depending only on the plasma equilibrium Σ

α
F0α(u). 

Assuming the hot components of pair plasma with the 
so-called “square” equilibrium velocity distributions 
and the cold heavy dust grains or ions, we have: 

 

where ωd
2 = Ndq2/ε0md is for dust or ions, and the ef-

fective gap frequency is: ωg
2 = (N0q2/ε0m0)(2 – v). The 

constant v is to ensure the charge neutrality of 
the plasma. 

Hence the Fourier-Laplace symbols are 

                                                             and  

The dispersion relation takes the form 

The respective dust-pair plasma wave equation for 
the resolvent kernel takes the form: 

(5) 

The equation is a wave equation and the equation 
can be reduce to the simpler form of the dust/ion acous-
tic waves in the pair plasma with dust grains: 

(6) 

Exact solution we can obtain substituting s = –iω 
and since <u2> = a2/3, we have the well-known Bohm-
-Gross dispersion relation, see also Ref. [2], ω2 ≈ ω0

2 + 3 
<u2> k2. We note that, that K(x, t) and R(x, t) are time 
reversible and x-space reflexive and the resolvent is 
an undamped dispersive wave, i.e. the Riemann func-
tion of the following dispersion equation 

(7) 

The asymptotic expansion of the function is 

where D = 3 <u2>/2ω0. It appears that the asymptotic 
formula is common for all resolvents in case of equilib-
rium velocity distributions possessing all moments and 
the mean-square velocity being <u2>. 

For Maxwellian plasmas, computer calculations, 
see Ref. [7], show that nature of plasma response is 
compound of a diffusive transition of oscillations and 
decreasing dispersive modes. 

The next exact solution known to us is the resolvent 
for the Lorentz (Cauchy) electron-positron pair plasma. 
The equilibrium distribution is 

where λ is a positive number. The distribution is re-
lated to Lévy stable nongaussian processes and has no 
higher moments, e.g. mean-square velocity. It can be 
related to anomalous diffusion processes and is useful 
for modeling plasma with a high-energy tails that are 
typical in space plasmas. 

Anomalous diffusion of oscillations 

We quote new results concerning the resolvent for pair 
plasma with dust grains. 

Let us describe the kernels due to equilibrium dis-
tributions of plasma species: 

(8) 

Introducing the parameter ∈ = ωd
2/ωg

2 < 1, we can 
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(9) 

where                                                                           .

The oscillating component with the dust plasma 
frequency is: 

The higher order terms due to the dust presence 
can be found and the analytical form can be presented. 
The resolvent R(x, t) is drastically different from the 
previous one. It does not exhibit wave propagation and 
there is no dispersion relation. We observe a “diffusive 
transition” of oscillations. 

If we assume the solution in the form 

(10)           R(x, t) = –ω0ρ(x, t)sin(ω0t) 

where 

We can show that the distribution function ρ(x, t) 
solves a fractional partial differential equation, (frac-
tional diffusion equation) 

The symmetric fractional derivative operator ∂α|x| 
corresponds to multiplication by the symbol –|k|α in the 
Fourier space. For more details on symmetric α-stable 
(SαS) we refer the reader to [3, 6]. 

Conclusions 

An initial-value problem for Vlasov-Poisson/Ampère  –
equations has been reduced to the integral equation 
and the solution to the problem is expressed in terms 
of a forcing function G(x, t) and its convolution with 
a resolvent kernel R(x, t). 
The forcing function is responsible for the initial  –
disturbance and the resolvent is responsible for 
equilibrium distributions. Resolvent kernel equa-
tions are eligible for computer calculations. 
We have exhibited three types of exact closed-form  –
solutions of the space-time resolvent equations. 
These solutions can be classified following the space-
-time behavior. The nature of plasma response is a 
compound of a diffusive transition, see Eq. (10), 

being essentially a plasma oscillation mode with 
the ω0 – plasma frequency and the diffusive types 
of amplitude envelop, and a decreasing dispersive 
wave mode. 
The crucial point of the paper is the relation between  –
equilibrium distributions of plasma species and the 
type of propagation or diffusive transition of plasma 
response to a disturbance. 
Dust/ion impurities may cause appearance of dust or  –
ion acoustic waves and solitons. They disturb oscilla-
tions but the diffusive transitions remain unchanged 
according to envelop ρ(x, t).
There is a suggestion that the envelopes of diffu- –
sive transition of oscillations can be governed by a 
symmetric α-stable (SαS) process. The probability 
distributions of the processes are related to the frac-
tional diffusive transition described by the fractional 
diffusion equations. 
Up to now, the necessary and sufficient conditions  –
of the type of disturbances propagations have not 
been determined. 
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