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Introduction 

Electric propulsion devices offer a good alternative 
to the chemically based thrusters. These devices expel 
high speed plasma into vacuum, and their high specific 
impulse characteristics make them very useful in space 
applications. In the study of the plasma behavior, com-
putational simulations are used in addition to the ana-
lytical and experimental methods, and PIC technique 
is widely used to simulate collisionless low density plas-
mas [1]. In this study, the main aim has been to develop 
a new two-dimensional (2-D) electrostatic PIC solver 
that can be used on non-rectangular geometries. 

In electrostatic PIC solvers, potentials and electric 
fields on the mesh points are calculated by solving 
Poisson’s equation. While equations of motion of the 
ions are computed using algorithms such as Leap-Frog, 
electron distributions are modeled using the Boltzmann 
relation [3]. In the first part of this study, a 2-D non-
-rectangular physical domain (which consists of two 
walls and two open boundaries) is meshed using an al-
gebraic grid, and the physical domain with non-uniform 
meshes are mapped to a rectangular computational 
domain with uniform meshes. Then, 2-D Poisson’s equa-
tion is transformed to the computational domain and is 
solved using a MC method. The advantages of the MC 
method are: easy extension of the higher dimensional 
problems, easy implementation on parallel computers, a 
straightforward implementation of the complex bound-
ary conditions with severe gradients, and availability of 
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local solutions without calculation of the whole field [4, 
8, 10, 11]. In the second part of the study, ions are traced 
using equations of motion. Electron densities at mesh 
points are modeled using the Boltzmann relation. While 
ion movements are calculated in the physical domain, 
cell data are obtained from computational domain to 
increase efficiency [9]. 

Poisson’s equation in computational domain 

Many methods are available to solve Poisson’s equation 
[6], and in this study, a new Poisson solver based on a 
MC method is developed which is capable of handling 
both Neumann and Dirichlet boundary conditions. As 
for verification, a Poisson equation 

(1) 

is solved on a rectangular domain where Neumann 
boundary conditions are implemented on the left and 
right boundaries with zero derivatives. The results are 

shown to be very close to those obtained by a differ-
ent solver based on fast Fourier transforms (FFT) [7] 
as shown in Fig. 1. Less than 2 percent difference is 
observed locally throughout the domain. 

Later, a 2-D non-rectangular physical domain is 
meshed using an algebraic grid generator (with 15 cells 
in the x-direction and 9 cells in the y-direction) and the 
physical domain (x,y) is mapped to a square shaped 
computational domain (ζ,η) with uniform meshes using 
analytical relations ζ = x/d and η = y/(ax2 + bx + c) 
where a, b, c and d are constants (see Fig. 2). 

The Poisson equation φxx + φyy = –[ρ(x,y)/ε0] is trans-
formed to a new computational domain as follows: 

(2) 

Fig. 1. Solution of a Poisson’s equation (a) FFT solver, (b) 
Monte Carlo solver. 

Fig. 2. (a) Physical domain. (b) Computational domain.
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This equation can be discretized by finite dif-
ferencing, as follows: 

(3)

 

After dividing each term by the coefficient of φi, j, the 
coefficients in the front of φi+1, j, φi–1, j, φi, j+1, φi, j–1, j, φi–1, j+1, 
are called as the sensitivity coefficients in this Monte 
Carlo method. They are related to the probability of 
moving in different directions within the algorithm. 
The summation of these coefficients should give unity, 
and none of them should be negative [5]. In the present 
calculations, these conditions are met and their values 
at various (ζ,η) locations (in the transformed domain) 
are presented in Table 1. 

Note that Poisson’s equation is a linear partial dif-
ferential equation and can be solved in two steps using 
the superposition principle [12]. For the first solution, 
Laplace’s equation, ∇2φ1 = 0, is solved with the bound-

ary conditions of the original problem. Then, Poisson’s 
equation, ∇2φ2 = –(ρ/ε0) with zero boundary conditions 
is solved and the two solutions are added, φ = φ1 + φ2. 
The solution gives the discrete potential values at the 
grid points of the computational domain. Next, the 
electric field is calculated from 

(4)        E
→

 = –∇
→

 Ø 

Note that one needs to use transformed form of 
this equation and it is solved using finite difference 
schemes. 

Tracing of plasma particles 

In numerical studies, plasma ions are introduced to the 
physical domain from the open boundaries and finite 
numbers of ions enter and leave the physical domain 
at each time step. In this study, ions are sent into the 
flow region from ion reservoirs. The number of ions and 
their velocities are designated by the boundary condi-
tions, and positions of ions in the reservoir are chosen 
randomly. A force is applied on each ion because of 
the electric field (E

→
). The equations of motion of these 

particles can be solved using different algorithms. In 
this study, the Leap-Frog algorithm is used to calculate 
particle advancing. 

Electrons move much faster compared to ions, be-
cause of their small masses. It is assumed that electrons 
settle themselves instantly according to the electric 
fields. As a result of this, a kinetic-ions and fluid-elec-
trons approach is used, and electrons are distributed in 
the physical domain using the Boltzmann distribution 
assuming isothermal electrons. The electron number 
density is given as 

(5) 

In this equation k is the Boltzmann constant, n0 is the 
electron number density for φ = 0, Te is the temperature 
and the potential is φ. After solving equations of motion 
for a time step, ions are placed in their new positions in 
the physical domain. At this stage, boundary conditions 
are also taken into account. Next, using analytical rela-
tions between physical and computational domains, ion 
cell data are calculated in the computational domain 
and charge densities on the mesh points are found. 
These charge densities are used in the calculation of 
the potential values of the same mesh points. In the 
PIC method, this loop continues until a predetermined 
condition is met. 

Table 1. Sensitivity coefficients at different locations of computational domain 

(ζ,η) Probability going 
right ( → )

Probability going 
up ( ↑ )

Probability going 
left ( ← )

Probability going 
down ( ↓ )

Probability going 
up and left (  ↑) Total 

(0,0) 0.250 0.250 0.250 0.250 0.000 1.000
(0.20, 0.56) 0.261 0.224 0.234 0.255 0.026 1.000
(0.40, 0.22) 0.270 0.219 0.250 0.241 0.020 1.000
(0.53, 0.44) 0.289 0.183 0.235 0.239 0.054 1.000
(0.80, 0.55) 0.328 0.120 0.226 0.223 0.102 1.000
(1,1) 0.379 0.002 0.140 0.240 0.239 1.000
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An example problem is solved with the present PIC 
solver for a (non-rectangular) 2-D nozzle flow. The cal-
culated results of the field potentials and charge densi-
ties are shown in Fig. 3. In these calculations, Neumann 
boundary conditions (with zero derivatives) are used at 
the right and left boundaries, and Dirichlet boundary 
conditions (with –10 V potential) are stipulated at the 
top and bottom boundaries. 

The present results represent the initial findings 
of an ongoing research work on plasma flow simula-
tions and have some shortcomings. For example, the 
results for the non-rectangular flow configuration (as 
shown in Fig. 3) are not validated due to the lack of 
experimental data and simulation results of other re-
searchers. It is observed that when positive potentials 
are stipulated at the top and bottom walls the solutions 
start to diverge. These instabilities may either arise from 
the nonphysical statistical noise of the PIC method 
or the nonlinear response of the plasma flow [2]. It is 

assessed that experimental verifications are needed to 
understand this issue. 

Summary and conclusions 

In this study, a MC method is used to solve Poisson’s 
equation which is the main equation of the electrostatic 
PIC solver. To validate the Monte Carlo computations, 
the solutions of Poisson’s equation (for both Neumann 
and Dirichlet boundary conditions) on a rectangular 
domain are compared successfully with other programs. 
Then, a non-rectangular physical domain is meshed 
using an algebraic grid generation method. The physi-
cal domain is mapped to a non-dimensional square 
shaped computational domain with uniform cells. The 
computational domain provides fast computation of 
particle cell data in addition to the easy implementation 
of the MC method to solve Poisson’s equation. Poisson’s 
equation is also transformed to the new domain using 
analytical relations between physical and computational 
domains. Finally, PIC simulations are realized to cal-
culate the plasma flows. The present calculations are 
the initial work of an ongoing research on plasma flow 
simulations and the results are found to be promising. 
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Fig. 3. Plasma flow properties in a 2-D nozzle. (a) – Field 
potentials in volts; (b) – number density (× 1011) in 1 m3. 


