PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of atmospheric - pressure microwave plasmas used for gas processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Research and Applications of Plasmas, Plasma-2011, 12-16 September 2011, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
This paper concerns the atmospheric-pressure microwave plasmas and their applications, mainly for gas processing. Several types of atmospheric-pressure microwave sources (MPSs), i.e. surface-wave-sustained MPS, nozzle-type MPSs, nozzleless MPSs, plasma-sheet MPSs and microwave microplasma sources - MmPSs (antenna- and coaxial-line- -based) as well as their performance are presented. The presented experimental results on the optimization of selected MPSs are confronted with results of the modelling of the electromagnetic field in them. The paper deals also with the applications of MPSs for the processing of gases. Two types of the plasma gas processing were experimentally tested: decomposition of volatile organic compounds (VOCs) and reforming of VOCs (mainly methane) into hydrogen. Results of the laboratory experiments on the plasma processing of several highly-concentrated (up to 100%) VOCs, including freon-type refrigerants, in the waveguide-supplied MPSs showed that the microwave discharge plasma is capable of fully decomposing the VOCs at relatively low energy cost. The use of waveguide-supplied coaxial-line-based and metal-cylinder-based nozzleless MPSs to methane reforming into hydrogen turned out to be energetically efficient. These selected results show MPSs to be an attractive tool for gas processing, including the harmful gas decomposition and production of useful gases.
Słowa kluczowe
Czasopismo
Rocznik
Strony
241--247
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
autor
  • Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Str., 80-952 Gdańsk, Poland and Department of Marine Electronics, Gdynia Maritime University, 83 Morska Str., 81-225 Gd, jmiz@imp.gda.pl
Bibliografia
  • 1. Bayliss KH (1995) Plasma generator with field-enhancing electrodes. US Patent no. 5418430
  • 2. Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ (eds) (2004) Non-equilibrium air plasmas at atmospheric pressure. IOP Publishing Ltd, Bristol, UK, pp 621–642
  • 3. Binner E, Deam RT (2009) Plasma abatement of air contaminated with trichloroethene degreasing agent. Plasma Sources Sci Technol 18:1–10
  • 4. Bromberg L, Cohn DR, Rabinovich A et al. (2000) System optimization and cost analysis of plasma catalytic reforming of natural gas. Int J Hydrogen Energy 25:1157–1161
  • 5. Chang JS (1993) Energetic electron induced plasma processes for reduction of acid and greenhouse gases in combustion flue gas. NATO ASI Series, G 34 (A):1–32
  • 6. Chang JS (2001) Recent development of plasma pollution control technology: a critical review. Sci Technol Adv Mater 2:571–576
  • 7. Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19;6:1152–1166
  • 8. Cormier JM, Rusu I (2001) Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D: Appl Phys 34:2798–2803
  • 9. Fridman A, Chirokov A, Gustol A (2005) Non-thermal atmospheric pressure discharges. J Phys D: Appl Phys 38:R21–R24
  • 10. Heintze M, Pietruszka B (2004) Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catal Today 89:21–25
  • 11. Hong YC, Uhm HS, Kim HS, Han MJ, Ko SC, Park SK (2005) Decomposition of phosgene by microwave plasma-torch generated at atmospheric pressure. IEEE Trans Plasma Sci 33;2:958–963
  • 12. Hrycak B, Jasiński M, Mizeraczyk J (2010) Spectroscopic investigations of microwave microplasmas in various gases at atmospheric pressure. Eur Phys J D 60:609–619
  • 13. http://www.airliquide.com
  • 14. http://www.loim.vrn.ru/index.php?m=63&page=58&nm=74&p=.2.3.56.64.70.71.72.73.74
  • 15. Jasiński M, Dors M, Mizeraczyk J (2008) Production of
  • hydrogen via methane reforming using atmospheric pressure microwave plasma. J Power Sources 181:41–45
  • 16. Jasiński M, Dors M, Mizeraczyk J (2009) Application of atmospheric pressure microwave plasma source for production of hydrogen via methane reforming. Eur Phys J D 54:179–183
  • 17. Jasiński M, Dors M, Mizeraczyk J (2009) Destruction of freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem Plasma Process 29:363–372
  • 18. Jasiński M, Goch M, Mizeraczyk J (2010) Microwave device for plasma sheet formation. Przegląd Elektrotechniczny 86:609–619 (in Polish)
  • 19. Jasiński M, Mizeraczyk J (2011) Plasma sheet generated by microwave discharge at atmospheric pressure. IEEE Trans Plasma Sci 39;11:2136–2137
  • 20. Jasiński M, Mizeraczyk J, Zakrzewski Z (2004) Microwave torch plasmas for decomposition of gaseous pollutants. J Adv Oxid Technol 7:51–58
  • 21. Jasiński M, Mizeraczyk J, Zakrzewski Z, Ohkubo T, Chang JS (2002) CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharges. J Phys D: Appl Phys 35:2274–2280
  • 22. Jasiński M, Zakrzewski Z, Mizeraczyk J (2006) Spectroscopic measurements of electron density in atmospheric-pressure surface wave sustained discharge in argon. Czech J Phys 56;Suppl B:787–794
  • 23. Kabouzi Y, Calzada MD, Moisan M, Tran KC, Trassy C (2002) Radial contraction of microwave-sustained plasma columns at atmospheric pressure. J Appl Phys 91:1008–1019
  • 24. Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Processes Polym 1:91–110
  • 25. Kopecki J, Kiesler D, Leins M, Schulz A, Walker M, Stroth U (2009) Investigations of a novel plasma torch at 915 MHz. In: Proc of 36th EPS Conference on Plasma Physics, June 29–July 3, 2009, Sofia, Bulgaria, 33E:O-5.065
  • 26. Kovacs T, Deam RT (2006) Methane reformation using plasma: an initial study. J Phys D: Appl Phys 39:2391–2400
  • 27. Leins M, Alberts L, Kaiser M et al. (2009) Development and characterization of a microwave-heated atmospheric plasma torch. Plasma Processes Polym 6:S227–S232
  • 28. Leins M, Schulz A, Walker M, Schumacher U, Stroth U (2008) Development and characterization of an atmospheric-pressure microwave plasma torch. IEEE Trans Plasma Sci 36;4:982–983
  • 29. Mizeraczyk J, Jasiński M, Zakrzewski Z (2005) Hazardous gas treatment using atmospheric pressure microwave discharges. Plasma Phys Control Fusion 47:B589–602
  • 30. Mizeraczyk J, Jasiński M, Zakrzewski Z (2008) Microwave plasma sources for gas processing. AIP Conf Proc 993:287–294
  • 31. Moisan M, Zakrzewski Z, Pantel R, Leprince P (1984) A waveguide-based launcher to sustain long plasma columns through the propagation of an electromagnetic surface wave. IEEE Trans Plasma Sci 12;3:203–214
  • 32. Nowakowska H, Jasiński M, Dębicki PS, Mizeraczyk J (2011) Numerical analysis and optimization of power coupling efficiency in waveguide-based microwave plasma source. IEEE Trans Plasma Sci 39;10:1935–1942 Studies of atmospheric-pressure microwave plasmas used for gas processing 247
  • 33. Rostaing JC (2003) Novel post-pump PFC abatement technology based on atmospheric surface-wave microwave plasmas. Future Fab Int 14:1–7
  • 34. Rostaing JC, Parent JC, Bryselbout F, Moisan M (2001) Process for purifying a gas and apparatus for the implementation of such a process. US Patent no. 6190510 35. Taube AL, Demyashev GM (2005) Microwave resonance plasma source. In: Chang K (ed) Encyclopedia of RF and microwave engineering. Wiley, New York
  • 36.Uhm HS, Hong YC, Shin DH (2006) A microwave plasma torch and its applications. Plasma Sources Sci Technol 15:S26–S34
  • 37.Van Veldhuizen EM (ed) (2000) Electrical discharges for environmental purposes: fundamentals and applications. Nova Science Publisher, Huntington, NY, pp 221–427
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0022-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.