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Abstract 

The objective of the research under the paper topic is an analytical, unified formulation of a new standardized 
view of general solution of hydrodynamic problem using algorithm to determine changes of the components of the 
velocity vector, the distributions of hydrodynamic pressure, load carrying capacity, of slide bearings with cooperating 
curvilinear, orthogonal surfaces that are lubricated with a various non-Newtonian lubricants. In this paper for non-
Newtonian lubricants are questioning the hitherto prevailing assumptions using in hydrodynamic theory of lubrication 
such as constant value of lubricant viscosity and pressure in the thickness of lubricating gap i.e. in gap height 
direction.  

Finally, the non-homogeneous partial differential equation generated with variable coefficients that is the result 
of the various boundary conditions being imposed that are different for each problem solved is an equation that 
determines the distributions of hydrodynamic pressure values. This equation is to be written in the form of a unified 
non-homogenous partial recurrence equation with variable coefficients. The Authors foresee that a mega-algorithm 
will be developed for the solution of this equation in a numerical form. This equation in particular cases is an 
equivalent of modified Reynolds equations in the research that has been conducted so far concerning the 
hydrodynamic theory of lubrication. 
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1. Introduction 
 

The authors accepts a hypothetical assumption that investigations of the hydrodynamic lubrication 
of slide bearings starting from the foundations of the problem shall result in questioning in some areas 
of solutions the basic simplifications that have been in use so far, e.g. the constant value of the 
viscosity of the lubricating liquid and of the hydrodynamic pressure on the thickness of the lubricating 
gap, lack of interaction of material coefficients of the superficial layer of lubricated surfaces on the 
viscosity of the lubricating agent. The theory of hydrodynamic lubrication that has been valid so far is 
based on the abovementioned simplification assumptions and it leads to Reynolds equations that are 
more or less modified and that determine the distributions of the values of the hydrodynamic pressure 
[5]. The research practice that has been accepted so far by many authors for the formulation of various 
problems in the area of hydrodynamics comes down to modifications of the Reynolds equation that 
was derived 100 years ago without any thorough derivations; one forgets that it is the Reynolds 
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equation that is the result of an imposing concrete boundary conditions that are different in almost each 
problem on the components of the distribution of the velocities of the lubricating liquid in the bearing 
gap. Furthermore, no attention is paid to the curvature of lubricated surfaces and, practically speaking, 
the same equation is accepted in cylindrical, rectangular or spherical coordinates. The authors assume 
that the abovementioned simplifications may lead to numerous incompatibilities of the results of 
numerical and empirical research [4].  
 
2. The system of partial differential equations  
 

We show following system of non-linear basic partial differential equations describing the 
lubrication of two curvilinear non-rotational surfaces [1-3]: 

Equation of continuity:  
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Equation of motion: 

 ,,,,
1

),(
2

31
2

31
i

p
ii

i
v

vv
p

h
vvX  (1.2) 

 ,2
2

2

2

3

2

2

1

2

pvv
  (1.3) 

where for i=1,3., we have:  
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Dimensional apparent viscosity p p(v1,v3, , ) is obtained from Rivlin-Ericksen dependencies. 
We denote: t  time,   fluid density, j0 Kronecker symbol. The unknown functions are: velocity 
components v1, v2, v3, pressure p. Velocity components vi, pressure p, apparent viscosity function p, 
are presented in following series expansions in relation to small parameter [6, 7, 8]: 
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where i=1,2,3; j=0,1,2,…,   linear velocity of cooperating surface, D  Deborah number. We 
denote: 0  characteristic dimensional value of classical dynamic viscosity, pj dimensionless 
expansion coefficients whereas for j=0 we have p0 1 and pj pj(v1,v3) for j=1,2,.... Moreover , 

  first and second pseudoviscosity coefficient in Pas2, 0  characteristic constant dynamic 
viscosity value in Pas, A1  velocity deformation tensor in s 1 [1].  
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Now we put series (2.1-2.3) into the system of partial differential equations (1.1)-(1.3). 
Multiplying the series by Cauchy method, equating the coefficients of the like powers of small 
parameter D, we obtain a sequence of following systems of non-linear (for Xij 0), or linear (for 
Xij=0) partial equations [9]: 
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for i=1,3; j=0,1,2,…, (1+2 / ) 0/  where: 
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System of Eqs.(3)-(5) for Xij=0, determines following unknown functions: v1j, v2j, v3j, pdj, for 

i=1,3; j=0,1,2,... where  – inertia force, and convection transport obtained after Pickard 

approximation procedures: 

*
ijX

 . (7) *)(
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kk
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Symbols hi( 3) for i=1,3 denote Lame coefficients for rotational surfaces and its non-
monotone generating lines. For non-rotational surfaces, we have: hi( 1, 3) for i=1,3. 
 
3. Boundary conditions 
 

Since the two cooperating surfaces are moving, and there can be slip, hence the boundary 
conditions (for i=1,2,3; j=0,1,2,…) have the following form [6]: 

 ),t,,(U)t,,0,(v 31i0j321ij  (8a) 

 ),t,,(U)t,,h,(v 31ip0j321ij  (8b) 

where j0 denotes Delta Kronecker Symbol, h denotes gap height. Functions Ui 0, Uip 0 can be 
continuous, constant or variable but not arbitrary in general.  
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4. Solutions of system differential equations 
 

Integrating twice equations (3) solutions with respect to variable 2  under conditions (8a), 
(8b), then if functions X and Z are uniform convergent to X*, Z* after Pickard procedure (6), hence 
we obtain [2, 6]: 
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where: 
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We integrate continuity equation (5) with the respect to variable 2, i.e. in gap height direction. 
Imposing the condition (8a) for i=2 i.e. v2j=U2 j0 for 2=0, upon velocity component v2j in gap 
height direction 2, we get the following solution [5]: 
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where j=0,1,2,… and t,,0, 3210 . 

Imposing the condition (8b) for i=2 i.e. v2j=U2p j0 for 2=h, upon velocity component (11) in 
gap height direction 2, we get the following expression: 
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where j=0,1,2,… and .t,,h, 321h  

Differentiating the definite integrals with variable limits of integration, we obtain the following 
formulae [2, 4, 5]: 
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for i=1,3; j=0,1,2,… . 
Because h2=1, hence: 

 31321 hhhhhg   (14) 

We put identity (13) in expression (12) and we take into account boundary conditions (8a), 
(8b) i.e.: 
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Hence for j=0,1,2,… we obtain [6]: 
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From formula (16) unknown pressure functions pj can be calculated as functions of velocity 
components v1j, v3j for j=0,1,2,… . Fluid velocity vector components v1j, v3j presented by formula 
(9) we put in Eq.(16). Thus, we obtain [6]: 
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for j=0,1,2,…; h1=h1( 1, 3), h3=h3( 1, 3), pdj( 1, 2=0, 3), and  
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for j=0,1,2,… . 
Mega Reynolds Equation (17) determines unknown pressure functions pj( 1, 2=0, 3) for j=0,1,2,… 

 
5. Particular case 
 

The following assumptions are made now: 
1. Fluid viscosity  is independent of 2 i.e. is constant in gap height direction. Then Eqs. (10), 

(19) give [6]: 
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2. Lubricant density  is constant. 

3. We are neglecting the inertia forces of the lubricant i.e.  .0X*
ij

4. We take into account Newtonian fluid i.e. .0Sij  

5. Only one curvilinear surface is moving in 1 direction, hence U1 0, U2=U3=0, U1p=U2p=U3p=0. 
6. We have a stationary time independent flow. 
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Mega Reynolds Equation (17) for j=0 has the following form [6]: 
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for h1=h1( 1, 3), h3=h3( 1, 3). 
 
6. Pressure changes in gap height direction 
 

Now we are going to proof that the hydrodynamic pressure varies in gap height direction. From 
(3)-(5) for j=0 and conditions (8) we obtain velocity component and pressure in following form: 

 310321303212032110 ,,,,,,,,,, dpvvv . (22.0) 

Into Eqs. (3)-(5) for j=1 we put (22.0) and =0 in (4). Hence, under conditions (8) we obtain 
corrections of velocity component and pressure in following form: 

 311321313212132111 ,,,,,,,,,, dpvvv . (22.1) 

 …………………………………………………………….. 

Into Eqs. (3)-(5) for j=J we put solutions (22.1), (22.2), ….(22.J-1) and =0 in Eq.(4). Hence, 
under conditions (8) we obtain corrections of velocity component and pressure in following form: 

 31321332123211 ,,,,,,,,,, dJJJJ pvvv . (22.J) 

The above mentioned pressure functions we recognize as pressure and its corrections on the 
journal surface i.e. for 2=0. Hence, we can write: 

 321313210310 ,0,,,...,,0,, dJdJdd pppp . (23) 

We multiply by DJ and sum up mutually Eq.(4) for j=0,1,…,J. Thus after integration both sides 
of modified Eq.(4) with respect to variable 2 we obtain: 
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On the journal surface for 2=0 the pressure is described by the formula: 
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Pressure function has finally the form: 
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In particular case for J=1 we have: 
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Velocity components v10, v30 determined from (9) for j=0 we put in (28.1). Hence we obtain: 
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On the sleeve surface for 2=h the hydrodynamic pressure (28.2) has finally the form: 
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For cylindrical bearing 1= , 2=r, 3=z, U= R, h1=r. The pressure (29) on the sleeve has the 
form: 
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It is easy to see that if D=0, then pressure on the sleeve is identical as the pressure on the 
journal surface. 
 
7. Adaptation of recurrences 
 

In curvilinear coordinates ),,( 321  a modified Reynolds equations determines unknown 

function {i.e. hydrodynamic pressure} in thin space between two surfaces with 

curvilinear sections. According to equations (17) an unknown function p for D=0 satisfies the 
following unified form of second order partial differential equation [10]: 
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THEOREM  
A partial homogeneous, second order differential Reynolds equation with variable continuous, 
single valued coefficients A, B, C, F, A  derived in thin space between two movable surfaces in 
curvilinear, orthogonal coordinates ( 1, 2, 3) and presented in the following form: 
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is simulated by the following linear, non-homogeneous partial second order recurrence equation 
with unknown function p, variable coefficients S and a variable free term Q: 
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7. Conclusions 
 

An adaptation of the known recurrence and difference methods in the case of imposing of 
various boundary conditions that are formulated in curvilinear orthogonal coordinate systems 
during the solution of complex problems of Reynolds equations presents in the author’s opinion 
a new scientific contribution, which is presented in this paper in the scope of linear recurrence 
equations with variable factors and a variable free term [5]. 

The mega-algorithms developed of the solutions and the properties of the mega-algorithm for 
the determination of the solutions of a generalized Reynolds partial recurrence equation with 
variable factors was used in numerical calculations with the use of professional software such as 
Matlab and Mathcad. 
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