PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The survey of soft computing techniques for reliability prediction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of reliability prediction is to estimate a time of upcoming nonoperational state at the current operational state of a system through real-time monitoring operational parameters and/or performances. Hence, the predictive (proactive) maintenance in industrial systems involves operational conditions monitoring and online forecasting the useful life of machines equipment to support the decision-making process in selection of the best maintenance action to be carried out. The advanced warning of the failure possibility can bring the attention of machines operators and maintenance personnel to impending danger, and facilitate planning preventive and corrective operations, as well as inventory managing. This problem has been extensively studied in many scientific works, where the predictive models are based on the data-driven approaches that can be generally divided into statistical techniques (regression, ARMA models, Bayesian probability distribution estimation, etc.), grey system theory, and soft computing methods. The artificial intelligence is frequently addressed to the predictive problem by utilizing the learning capability of artificial neural network (ANN), and possibility of nonlinear mapping using fuzzy rules-based system (FRBS) or recognizing and optimizing data-derived pattern by using evolutionary algorithms. The paper is a survey of intelligent methods for failure prediction, and delivers the review of examples of scientific works presenting the computational intelligence-based approaches to predictive problem.
Twórcy
autor
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
Bibliografia
  • [1] Chang, S. C., Lai, H. C., Yu, H. C., A variable P value rolling grey forecasting model for Taiwan semiconductor industry production, Technological Forecasting and Social Change, Vol. 72, No. 5, pp. 623-640, 2005.
  • [2] Chen, Y., Chang, F. J., Evolutionary artificial neural networks for hydrological systems forecasting, Journal of Hydrology, 367, pp. 125-137, 2004.
  • [3] Damousis, I. G., Alexiadis, M. C., Theocharis, J. B., Dokopoulos, P. S., A fuzzy model for wind speed prediction and power generation in wind park using spatial correlation, IEEE Transactions on Energy Conversion, Vol. 19, No. 2,pp. 352-361, 2004.
  • [4] De Jong, K. A., Spears, W. M., Gordon, D. F., Using genetic algorithms for concept learning, Machine Learning, Vol. 13, Is. 2-3, pp. 161–188, 1993.
  • [5] Deng, J. L., Grey system fundamental method, Huazhong University of Science and Technology, Wuhan, China, 1982.
  • [6] Diao, Y., Passino, K. M., Stable fault-tolerant adaptive fuzzy/neural control for a turbine engine, IEEE Transactions on Control Systems Technology, Vol. 9, No. 3, pp. 494-509, 2001.
  • [7] Elbaum, S., Kanduri, S., Amschler, A., Anomalies as precursors of field failures, IEEE Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE 2003), pp. 108–118, 2003.
  • [8] El-Fouly, T. H. M, El-Saadany, E. F., Salama, M. M. A., Grey predictor for wind energy conversion systems output power prediction, IEEE Transactions on Power Systems, 21(3), pp. 1450-1452, 2006.
  • [9] Fu, S., Xu, C.-Z., Quantifying temporal and spatial fault event correlation for proactive failure management, In IEEE Proceedings of Symposium on Reliable and Distributed Systems (SRDS 07), 2007.
  • [10] Gu, J., Vichare, N., Ayyub, B., Pecht, M., Application of grey prediction model for failure prognostics of electronics, International Journal of Performability Engineering, Vol. 6, No. 5, pp. 435-442, 2010.
  • [11] Hammer, M., Kozlovsky, T., Svoboda, J., Szabo, R., Fuzzy systems for simulation and prediction of the residual life of insulating materials for electrical machines windings, In Proceedings of International Conference on Solid Dielectrics, Touluse, France 2004.
  • [12] Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., TASA: Telecommunication alarm sequence analyzer or how to enjoy faults in your network, In IEEE Proceedings of Network Operations and Management Symposium, Kyoto, Japan, Vol. 2, pp. 520–529, 1996.
  • [13] Herrera, F., Genetic fuzzy systems: taxonomy, current research trends and prospects, Evolutionary Intelligence, Vol. 1, No. 1, pp. 27-46, 2008.
  • [14] Hoffmann, G. A., Malek, M., Call availability prediction in a telecommunication system: A data driven empirical approach, In Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, United Kingdom 2006.
  • [15] Holland, J. H., Reitman, J. S., Cognitive systems based on adaptive algorithms, In: Waterman D.A., Hayes-Roth F. (Eds.) Patter-directed inference systems, Academic Press, London 1978.
  • [16] Ishibuchi, H., Multiobjective genetic fuzzy systems: review and future research directions, In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 913–918, London 2007.
  • [17] Kim, D., Kim, C., Forecasting time series with genetic fuzzy predictor ensemble, IEEE Transactions on Fuzzy Systems, Vol. 5, No. 4, pp. 523-535, 1997.
  • [18] Kisi, O., Shiri, J., Precipitation forecasting using wavelet-genetic programming and waveletneuro- fuzzy conjunction Models, Water Resource Manage, 25, pp. 3135-3152, 2011.
  • [19] Kourounakis, N. P., Neville, S. W., Dimopoulos, N. J., A model based approach to fault detection for the reverse path of cable television networks, IEEE Transactions on Broadcasting, Vol. 44, No. 4, pp. 278-487, 1998.
  • [20] Kusiak, A., Shah, S., Data-mining based system for prediction of water chemistry faults, IEEE Transactions on Industrial Electronics, 15(2), pp. 593–603, 2006.
  • [21] Kwong, W. A., Passino, K. M., Laukonen, E. G., Yurkovich, S., Expert supervision of fuzzy learning systems for fault-tolerant aircraft control, Proceeding IEEE, Special Issue on Fuzzy Logic in Engineering Applications, Vol. 83, pp. 466–483, 1995.
  • [22] Li, C. J., Ray, A., Neural network representation of fatigue damage dynamics, Smart Materials Struct., No. 4, pp. 126-133, 1995.
  • [23] Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., Sahoo, R. K., BlueGene/L failure analysis and prediction models, In Proc. of IEEE Conf. on Dependable Systems and Networks (DSN), 2006.
  • [24] Maki, Y., Loparo, K. A., A neural network approach to fault detection and diagnosis in industrial processes, IEEE Transaction on Control Systems Technology, Vol. 5, pp. 529-541, 1997.
  • [25] Mickens, J., Noble, B., Exploiting availability prediction in distributed systems, In Proc. of USENIX Symp. on Networked Systems Design and Implementation (NSDI), 2006.
  • [26] Murray, J., Hughes, G., Kreutz-Delgado, K., Hard drive failure prediction using nonparametric statistical methods, Proceedings of ICANN/ICONIP, Istanbul, Turkey 2003.
  • [27] Neville, S. W., Early fault detection in large scale engineering plants, Ph.D. Dissertation, University of Victoria, 1998.
  • [28] Ning, M. H., Yong, Q., Di, H., Ying, C., Zhong, Z. J., Software aging prediction model based on fuzzy wavelet network with adaptive genetic algorithm, In 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), IEEE Computer Society, pp. 659–666, Los Alamitos, CA, USA 2006.
  • [29] Pawar, P. M., Ganguli, R., Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades, Mechanical Systems and Signal processing, 21: 2212-2236, 2007.
  • [30] Prochazka, A., Sys, V., Time series prediction using genetically trained wavelet networks, Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pp. 195-203, 1994.
  • [31] Sahoo, R. K., Oliner, A. J., Rish, I., Gupta, M., Moreira, J. E., Ma, S., Vilalta, R., Sivasubramaniam, A., Critical event prediction for proactive management in large-scale computer clusters, In Proc. of ACM Conf. on Knowledge Discovery and Data Mining (SIGKDD), 2003.
  • [32] Salfner, F., Lenk, M., Malek, M., A survey of online failure prediction methods, ACM Computing Surveys, Publisher: ACM, Vol. 42, Is. 3, pp. 1-42, 2010.
  • [33] Smoczek, J., Szpytko, J., The HMI/SCADA in control systems and supervision processes of manufacturing transport, Journal of KONES Powertain and Transport, Vol. 15, No. 3, pp. 499–507, 2008.
  • [34] Smoczek, J., Szpytko, J., Intelligent supervisory system for availability estimation of automated material handling system, In Proceedings of the European Safety and Reliability Conferemce, ESREL 2011, pp. 2797-2804, Troyes, France 2011.
  • [35] Smoczek, J., Szpytko, J., Self-learning fuzzy predictor of exploitation system operating time, Journal of KONES Powertrain and Transport, Vol. 18, No. 4, pp. 463-469, 2011.
  • [36] Smoczek, J., Szpytko, J., A genetic fuzzy approach to estimate operating time of transport device, Journal of KONES Powertrain and Transport, Vol. 18, No. 4, pp. 601-608, 2011.
  • [37] Takagi, T., Sugeno, M., Fuzzy identification of systems and its application to modeling and control, IEEE Trans. on Systems, Man, Cybernetics, Vol. SMC-15, No. 1, pp. 116-132, 1985.
  • [38] Troudet, T., Merrill, W., A real time neural net estimator of fatigue life, In IEEE Proceedings of International Joint Conference on Neural Networks (IJCNN 90), pp. 59–64, 1990.
  • [39] Watanabe, K., Matsuura, I., Abe, M., Kubota, M., Incipient fault diagnosis of chemical processes via artificial neural networks, AIChE Journal, Vol. 35, No. 11, pp. 1803–1812, 1989.
  • [40] Weiss, G., Timeweaver: A genetic algorithm for identifying predictive patterns in sequences of events, In Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, pp. 718–725, San Francisco, CA 1999.
  • [41] Yeh, C. W., Chang, C. J., Li, D. C., Modified grey prediction method to early manufacturing data sets, In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong 2009.
  • [42] Zio, E., Di Maio, F., A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system, Reliability Engineering and System Safety 95, pp. 49-57, 2010.
  • [43] Zadeh, L. A., Fuzzy Sets, Information and Control, No. 8, pp. 338-353, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0019-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.