PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The numerical simulation of the pyrotechnic actuator for the active bumper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper contains the description and classification of pyrotechnic actuators focusing on the automotive industry applications. This paper also explains the compatibility issues during frontal impact of a passenger car with a large truck. The construction of the pyrotechnic actuators for the "active bumper" is presented here. The processes occurring within the pyrotechnic actuators after ignition of a pyrotechnic propellants have been explained. The investigations are focused on the dependence of a shape of the actuator's combustion chamber and the piston stroke time. It appears that the appropriate design of the combustion chamber can decrease the time required for a piston stroke using this same type of a propellant. This also allows to reduce the amount of propellant when the more rapid stroke is not required. This is because of the characteristics of the detonation waves which are responsible for the piston movement. The visualization of the detonation waves occurring due to ignition of the propellant is crucial for understanding the dependence between the construction of the actuators interior and the piston stroke time. Therefore, the approach of simulating numerically the detonation waves aroused. This simulation was conducted with aid of ANSYS Workbench 13 environment using the AUTODYN module. The numerical tests consists on modelling the actuator without changing the overall dimensions as well as the parameters of the propellant. The only elements modified were piston and the bottom of the cylinder shape.
Twórcy
autor
autor
  • Wroclaw University of Technology Department of Mechanical Engineering Łukasiewicza Street 7/9, 50-371 Wrocław, Poland tel.: +48 71 3477918, fax: +48 71 3477918, aleksander.gorniak@pwr.wroc.pl
Bibliografia
  • [1] Vadim Kcrjytoff, Analysis and design of a pyrotechnic powered self-stopping actuator, January 10, PhD dissertation University of Calfomia/Livermore, 1975.
  • [2] Lee, H. S., Unsteady gas dynamics effects in pyrotechnic actuators. Journal of spacecraft and Rockets, Vol. 41, No. 5, pp 877-886, 2004.
  • [3] Fordham, S., High explosives and propellants. Pergamon Press Ltd, Second edition, 1980.
  • [4] Nabulsi, S. M., Page, N. W., Response of a movable wasll to a schck wave, 11th Australlina Flud mechanics Confenernce, University of Tasmania, pp. 35-38, Hobart, Australia 1992.
  • [5] Gushanov, A. R., Dependence of the Shape of a Detonation Wave Front on the Detonation Wave Velocity upon Detonation of a Cylindrical Charge, Combustion, Explosion, and Shock Waves, Vol. 37, No. 1, pp. 113-118, 2001.
  • [6] Lee, J. H. S., The detonation phenomeneon, Cambridge University Press, 2008.
  • [7] Papalexandris, M. V., Thomas, J. F., Jacobs, C., Deledicque, V., Structural characteristics of detonation expansion, Proceedings of the Combustion Institute. Elsevier Inc 31, pp. 2407-2414, 2007.
  • [8] Wingerden, K., Bjerketvedt, D., Roar Bakke, J., Detonations in pipes and in the open, Christian Michelsen Research Bergen, Norway.
  • [9] Vasil’ev, A. A., Vasil’ev, V. A., Diffraction Of Waves In Combustible Mixtures, Journal of Engineering Physics and Thermophysics, Vol. 83, No. 6, pp. 1178- 1196, 2010.
  • [10] Roy, G. D., Frolov, S. M., Borisov, A. A., Netzer, D. W., Pulse detonation propulsion: challenges, current status, and future perspective, Progress in Energy and Combustion Science 30, 545–672, 2004.
  • [11] Bull, D. C., Edwards, D. H., An investigation of the relfected shock interation porcess in a shock tube, AIAA Journal, Vol. 6, No. 8, pp.1549-1555, 1968.
  • [12] Henshaw, W. D., Smyth, N. F., Schwendeman, D. W., Numerical shock propagation using geometrical shock dynamics, J. Fluid Mech., Vol. 171, pp. 516-545, 1986.
  • [13] Johansson, B., Apazidis, N., Lesser, M. B., On shock waves in a confined reflector, Wear 233–235, 79–85, 1999.
  • [14] Gui, M., Fan, B., Dong, G., Ye, J., Interaction of a reflected shock from a concave wall with a flame distorted by an incident shock, Shock Waves, 18 pp. 487–494, 2009.
  • [15] Kurng, Y. Chang., Pyrotechnic Devices, Shock Levels And Their Applications, Pyroshock Seminar, ICSV9 July 8-11, 2002.
  • [16] Ahmed, R., Johnston, A. S., Garrison, J. C., Gaines, J. L., Waggoner, J. D., Design and demonstration of bolt retractor separation system for x-38 deorbit propulsion stage, NASA Marshall Space Flight Center.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0019-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.