PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD modeling of thermal cycle of supercharged compression ignition engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of modelling of thermal cycle of turbocharged compression ignition IC engine are presented. The object of investigation was a 6CT107 turbocharged auto-ignition internal combustion engine powered by diesel oil, installed on an ANDORIA-MOT 100 kVA/ 80 kW power generating set in a portable version. The performed simulations of the combustion process have provided information on the spatial and time distributions of selected quantities within the combustion chamber of the test engine. The numerical analysis results have been juxtaposed with the results of indicating the engine on the test stand. Modelling of the thermal cycle of an auto-ignition piston engine in the AVL FIRE was carried out within the study. Advanced numerical submodels were used to analysis of combustion process, such as: Extended Coherent Flame Model (ECFM-3Z), turbulence model k-zeta-f, injection submodels with evaporation, collisions, coalescence and other. Intake and exhaust processes were included during modelling. This resulted in a lot of information about the intake, fuel mixing, ignition process and the exhaust process. Results of modelling were compared with results from real engine.
Słowa kluczowe
Twórcy
autor
autor
autor
  • Czestochowa University of Technology Department of Mechanical Engineering and Computer Science Armii Krajowej Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250555, fax: +48 34 3250555, tutak@imc.pcz.czest.pl
Bibliografia
  • [1] AVL FIRE, VERSION 2009ICE, Physics & Chemistry. Combustion, Emission, Spray, Wallfilm, Users Guide, 2009.
  • [2] Colin O., Benkenida A., The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology 2004.
  • [3] Tutak, W., Modelling and analysis of some parameters of thermal cycle of IC engine with EGR. Combustion Engines 4/2011 (147), pp. 43-49, 2011.
  • [4] Tutak, W., Jamrozik, A., Modelling of thermal cycle of gas engine using AVL FIRE software. Combustion Engines R. 49, No. 2 (141), pp. 105-113, 2010.
  • [5] Baumgarten, C., Mixture Formation in Internal Combustion Engines, Springer-Verlag Berlin Heidelberg 2006.
  • [6] Tatschl, R., Priesching, P., Ruetz, J., Recent Advances in DI-Diesel Combustion Modeling in AVL FIRE – A Validation Study. International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress April 15, Detroit, MI 2007.
  • [7] Musculus, M. P., Rutland, C. J., Coherent flamelet modeling of diesel engine combustion. Combustion science and technology, Vol. 104, No. 4-6, pp. 295-337, 1995.
  • [8] Hélie, J., Trouvé, A., A modified coherent flame model to describe turbulent flame propagation in mixtures with variable composition. Proceedings of the Combustion Institute, Volume 28, Issue 1, pp. 193-201, Revue de l'Institut Français du Pétrole, 2000.
  • [9] Kusaka, J., Daisho, Y., Simulating combustion and exhaust gas emissions in a DI diesel engine by using a CFD code combined with detailed chemistry, Journal of KONES Internal Combustion Engines, Vol. 10, No. 1-2, 2003
  • [10] Binesh, A. R., Hossainpour, S., Three dimensional modeling of mixture formation and combustion in a direct injection heavy-duty diesel engine, World Academy of Science, Engineering and Technology 41, pp. 207-212, 2008.
  • [11] Cupiał, K., Tutak, W., Jamrozik, A., Kociszewski, A., The accuracy of modelling of the thermal cycle of a compression ignition engine. Combustion Engines, R. 50, No. 1 (144), pp. 37-48.
  • [12] Colin, O., Pires da Cruz, A., Jay, S., Detailed Chemistry-Based Auto-Ignition Model Including Low Temperature Phenomena Applied to 3D Engine Calculations, Proc. Combustion Institute 30, pp. 2649-2656, 2005.
  • [13] Tatschl, R., Priesching, P., Ruetz, J., Kammerdiener, Th., DoE Based CFD Analysis of Diesel Combustion and Pollutant Formation, SAE 2007-24-0048, 2007.
  • [14] Jaworski, P., Priesching, P., Teodorczyk, A., Bandel, W., Validation of the Numerical Simulation of Iso-octane Auto-ignition Delay Time in Rapid Compression Machine with the Use of ECFM-3Z (Extended Coherent Flame Model - 3 Zones) Combustion Model Against Experimental Data, Archivum Combustionis Vol. 30, No. 1-2, 2010.
  • [15] Priesching, P., Ramusch, G., Ruetz, J., Tatschl, R., 3D-CFD Modeling of Conventional and Alternative Diesel Combustion and Pollutant Formation – A Validation Study, SAE 2007- 01- 1907d.
  • [16] Szwaja, S., Knock and combustion rate interaction in a hydrogen fuelled combustion engine. Journal of KONES, Vol. 18, No. 3, pp. 431-438, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0018-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.