PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polydiagnostics performed on high - tech plasmas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Research and Applications of Plasmas, Plasma-2011, 12-16 September 2011, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
The large effluxes generated by high-tech plasmas force plasmas to non-equilibrium conditions. This implies that plasma features are decoupled from each other and that therefore different methods have to be used quasi-simultaneously to characterize the plasma. Even more insight in plasmas and methods is obtained if polydiagnostics is applied to a series of plasma conditions that gradually differ in equilibrium departure. After discussing methods of passive and active spectroscopy, we apply polydiagnostics on an argon plasma operated in open air. By introducing H2 and reducing the power we approach conditions of cool atmospheric plasmas (CAPs). It is seen that especially the passive methods for the electron temperature determination are very sensitive to the degree of equilibrium departure suggesting that active spectroscopy is preferable. However, one should realize that lasers can easily heat cool plasmas. This is due to the fact that the ionization degree of (semi-) CAPs is small.
Czasopismo
Rocznik
Strony
147--155
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
autor
  • Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands, Tel.: +31 40 247 2550, Fax: +31 40 247 2555, j.j.a.m.v.d.mullen@tue.nl
Bibliografia
  • 1. Benoy DA, van der Mullen JJAM, van der Sijde B, Schram DC (1991) A novel collisional radiative model with a numerical bottom and an analytical top. J Quant Spectrosc Radiat Transfer 46:195–210
  • 2. Carbone EAD, Palomares JM, Hübner S, Iordanova E, van der Mullen JJAM (2012) Revision of the criterion to avoid electron heating during laser aided plasma diagnostics (LAPD). J Instrum 7;1:C01016
  • 3. De Regt JM, de Groote FPJ, van der Mullen JJAM, Schram DC (1995)Comparison of active and passive spectroscopic methods to investigate atmospheric inductively coupled plasmas. Spectrochim Acta B 51:1371–1383
  • 4. De Vries N (2008) Spectroscopic study of microwave induced plasmas. PhD Thesis, Eindhoven University of Technology, The Netherlands
  • 5. De Vries N, Iordanova E, Hartgers A et al. (2006) A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model. J Phys D: Appl Phys 39:4194–4203
  • 6. De Vries N, Palomares JM, Iordanova E, van Veldhuizen EM, van der Mullen JJAM (2008) Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma. J Phys D: Appl Phys 41:205203
  • 7. Hartgers A (2003) Modeling of a fluorescent lamp plasma. PhD Thesis, Eindhoven University of Technology, The Netherlands
  • 8. Hübner S, Wolthuis J, Palomares JM, van der Mullen JJAM (2011) Investigating a coaxial linear microwave discharge. J Phys D: Appl Phys 44:385202
  • 9. Iordanova E, de Vries N, Guillemier M, van der Mullen JJAM (2008) Absolute measurements of the continuum radiation to determine the electron density in a microwave-induced argon plasma. J Phys D: Appl Phys 41:015208
  • 10. Iordanova S, Koleva I (2007) Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures. Spectrochim Acta Part B 62:344–356
  • 11. Iordanova E, Palomares JM, Gamero A, Sola A, van der Mullen JJAM (2009) A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission: application to atmospheric microwave induced Ar plasmas. J Phys D: Appl Phys 42:155208
  • 12. Moisan M, Barbeau J, Crevier M-C, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74;3:349–358
  • 13. Palomares JM, Hübner S, Carbone EAD et al. (2012) Stark broadening calibration with Thomson scattering at low density cold plasmas. (submitted to Spectrochim Acta B)
  • 14. Palomares JM, Iordanova E, van Veldhuizen EM et al. (2010) Atmospheric microwave-induced plasmas in Ar/H2 mixtures studied with a combination of passive and active spectroscopic methods. J Phys D: Appl Phys 43:395202
  • 15. Palomares JM, Iordanova E, van Veldhuizen EM et al. (2010) Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density. Spectrochim Acta B 65:225–233
  • 16. Rath JK (2003) Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Sol Energ Mat Sol C 76:431–487
  • 17. Torres J, Palomares JM, Sola A, van der Mullen JJAM, Gamero A (2007) A Stark broadening method to determine simultaneously the electron temperature and density in high-pressure microwave plasmas. J Phys D: Appl Phys 40:5929–5936
  • 18. Van de Sande MJ (2002) Laser scattering on low temperature plasmas-high resolution and stray light rejection. PhD Thesis, Eindhoven University of Technology, The Netherlands
  • 19. Van der Mullen JJAM (1990) Excitation equilibria in plasmas; a classification. Phys Reports 191:109–220
  • 20. Van der Mullen JJAM, Broks BHP (2005) Disturbed bilateral relations: a guide for plasma characterization and global models. J Phys: Conf Series 44:40–52
  • 21. Van der Mullen JAAM, Jonkers J (1999) Fundamental aspects of comparison of non-equilibrium aspects of ICP and MIP discharges. Spectrochim Acta B 54:1017–1044
  • 22. Van Gessel AFH, Carbone EAD, Bruggeman PJ, van der Mullen JJAM (2011) Simultaneous Thomson and Raman scattering on an atmospheric-pressure plasma jet. IEEE Trans Plasma Sci 39:2382–2383 Polydiagnostics performed on high-tech plasmas 155
  • 23. Van Gessel AFH, Carbone EAD, Bruggeman PJ, van der Mullen JJAM (2012) Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering. Plasma Sources Sci Technol 21:015003 (9 pp)
  • 24. Warner K, Hieftje GM (2002) Thomson scattering from analytical plasmas. Spectrochim Acta B 57:201–241
  • 25.Zhu X, Pu Y (2011) Determination of non-Maxwellian electron energy distributions in low-pressure plasmas by using the optical emission spectroscopy and a collisional-radiative model. Plasma Sources Sci Technol 13:267–278
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0017-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.