PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Xe and Kr bonding abilities in the single crystal oxygen vacancies of the uranium based fuel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The valence electron density distribution of krypton and xenon located in the oxygen vacancy and in its nearest neighbourhood was performed by application of the method “ab initio”. The results are presented on the graphs. The bonding energies of krypton and xenon in the uranium dioxide crystal lattice were calculated. It was found also that krypton and xenon cause a local increase of UO1.75Xe0.25 and UO1.75Kr0.25 unit cell and cause its deformation what is presented in tables. The force constants of krypton and xenon were also assigned what gives evidence about the strong bond of krypton and xenon with the UO1.75Xe0.25 and UO1.75Kr0.25 single crystal lattice. Obtained results are compared with the analogical studies of He atom incorporation into UO2 single crystal lattice.
Czasopismo
Rocznik
Strony
95--100
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • National Centre for Nuclear Research (NCBJ), 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland, Tel.: +48 22 718 0155, Fax: +48 22 779 3888, luddab@hotmail.com
Bibliografia
  • 1. Anderson DA, Uberuaga BP, Nericar PV (2011) U and Xe transport in UO2±x: Density functional theory calculations. Phys Rev B 84:054105–17
  • 2. Barlett N, Sladky FO (1968) The relative fluoride ion donor abilities of XeF2, XeF4 and XeF6, and a chemical purification of XeF4. J Am Chem Soc 90;19:5316–5317
  • 3. Baron D, Spino J, Papaioannou D, Ray I (2002) Rim formation gas behaviour: some structure remarks. In: Proc on Fission Gas Behaviour in Water Reactor Fuels, 26–29 September 2000, Cadarache, France. Published by OECD, pp 247–268
  • 4. Bellamy RG, Rich JB (1969) Grain boundary gas release and swelling in high burn-up uranium dioxide. J Nucl Mater 33;1:64–76
  • 5. Bieler R, Spence KE, Janda KC (1992) The dynamics of noble gas-halogen molecules and clusters. J Phys Chem 95:5058–5064
  • 6. Burbach J, Zimmermann H (1985) Spaltgasverhalten in bestrahltem UO2 bei out-of-pile-Gluehungen von 1400 bis 2000°C. KfK 3997:1–39
  • 7. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. John Wiley &Sons, New York
  • 8. Crocombette JPJ (2002) Ab initio energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide. Nucl Mater 305:29–36
  • 9. Denteneer P, Haeringen W (1985) The pseudopotential- density-functional method in momentum space: details and test casus. J Phys C 18:4127–4134
  • 10. Dudarev L, Nguyen Manh D, Suttopn AP (1997) Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide. Philos Mag B 75:613–621
  • 11. Fermi E (1934) Sullo spostamento per pressione dei termini elevati delle serie spettrali. (On the pressure displacement of higher terms in spectral series). Nuovo Cimento 11:157–166
  • 12. Frazer BC, Shirane G, Cox DE, Olsen CE (1965) Neutron-diffraction study of antiferromagnetism in UO2. Phys Rev A 140:1448–1452
  • 13. Freyss M, Vergnett N, Petit T (2006) Ab initio modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels. J Nucl Mater 352:144–150
  • 14. Gryaznov D, Heifets E, Kotomin E (2009) Ab initio DFT+U study of He atom incorporation into UO2 crystals. Phys Chem Chem Phys 11:7241–7247
  • 15. Hargreaves R, Collins DM (1976) A quantitative model for fission gas release and swelling in irradiated uranium dioxide. J Br Nucl Energy Soc 15:311–318
  • 16. Hohenberg H, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871
  • 17. http://www.abinit.org
  • 18. Ihm J, Zunger A, Cohen ML (1979) Momentum- space formalism for the total energy of solids. J Phys C 12:4409–4415
  • 19. Ito K, Iwasaki R, Iwano Y (1985) Finite element model of fission gas release from UO2 fuel. J Nucl Sci Technol 22;2:129–138
  • 20. Kohn W, Sham IJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138
  • 21. Kudin KN, Scuseria GE, Martin RL (2002) Hybrid density – functional theory and the insulating gap of UO2. Phys Rev Lett 89:266402–4
  • 22. Li J, Liang BE, Andrews L (2002) Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr and Xe atoms in noble gas matrices. Science 295:2242–2245
  • 23. Lorenz M, Rasanen M, Bondybey VE (2000) Neutral xenon hydrides in solid neon and their intrinsic stability. J Phys Chem A 104;16:3770–3774
  • 24. Lundell J, Chaban GM, Gerber RB (2000) Anharmonic vibrational spectroscopy calculations for novel rare-gas-containing compounds: HXeH, HXeCl, HXeBr, and HXeOH. J Phys Chem A 104;34:7944–7949
  • 25. Łyczko K (2002) Chemistry of the noble gases. Wiadomości Chemiczne 56:771–792
  • 26. McInnes DA, Winter PW (1988) The effect of the chemically inert fission products on the chemistry of irradiated UO2. J Phys Chem Solids 49;2:143–150
  • 27. Mac Iwan JR, Stevens WH (1964) Xenon diffusion in UO2. J Nucl Mater 11;1:77–93
  • 28. Matthews JR, Small GJ (1988) Towards a mechanistic understanding of transient fission gas release. In: Proc of a Technical Committee Meeting, 18–22 September 1988, Preston, England. IAEA-TC-659/4.1. IAEA, Vienna, pp 195–202
  • 29. Moak CD, Lutz HO, Bridwell LB, Nothcliffe LC, Datz S (1968) Equilibrium charge states of Br and I ions in solids and gases in the energy range 10–180 MeV. Phys Rev 176;2:427–437
  • 30. Nakajima T, Saito H (1987) A comparison between fission gas release data and FEMAXI-IV. Nucl Eng Des l. 101;3:267–279
  • 31. Nogita Y, Une K (1993) Thermal recovery of radiation defects and microstructural change in irradiated UO2 fuels. J Nucl Sci Technol 30;9:900–910
  • 32. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total – energy calculations: molecular dynamics and conjugate gradiens. Rev Mod Phys 64;4:1045–1097
  • 33. Petit T, Lemaignam C, Jollet F, Bigot BF, Pasturel A (1998) Point defects in uranium dioxide. Philos Mag B 77;3:779–786
  • 34. Petit T, Morel B, Lemaignan C (1996) Cohesive properties of UO2. Philos Mag B 73;6:893–904
  • 35. Pettersson M, Lundell J, Rasanen M (1999) New rare- gas-containing neutral molecules. Eur J Inorg Chem 4:729–737
  • 36. Philips C, Kleinman L (1959) New method for calculating wave functions in crystals and molecules. Phys Rev 116:287–294
  • 37. Ray ILF, Thiele H, Matzke H (1992) Transmission electron microscopy study of fission product behaviour in high burnup UO2. J Nucl Mater 188:90–95
  • 38. Rest J, Cronenberg WA (1987) Modeling the behavior of Xe, I, Cs, Te, Ba and Sr in solid and liquefied fuel during severe accidents. J Nucl Mater 150;2:203–225
  • 39. Sattonay G, Vincent L, Garrido F, Thome L (2006) Xenon versus helium behavior in UO2 single crystals: A TEM investigation. J Nucl Mater 355;1/3:131–135
  • 40. Stein L (1983) The chemistry of radon. Radiochim Acta 32:163–171
  • 41. Szuta M (1994) The diffusion coefficient of fission-product rare gases in single crystal uranium dioxide during irradiation. J Nucl Mater 210:178–186
  • 42. Szuta M (2006) Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel. In: Proc of the 6th Int Conf on WWER Fuel Performance, Modelling and Experimental Support, 19–23 September 2005, Albena. Institute of Nuclear Energy of the Bulgarian Academy of Sciences, Sofia, pp 345–354
  • 43. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane – wave calculations. Phys Rev B 43;3:1993–2006
  • 44. Une K, Kashibe S (1990) Fission gas release during post irradiation annealing of BWR fuels. J Nucl Sci Technol 27:1002–1016
  • 45. Veal BW, Lam DJ (1974) The band structure of UO2: an angle resolved and resonand photoemission study. Phys Rev B 10:4902–4911
  • 46. White RJ, Tucker MO (1983) A new fission-gas release model. J Nucl Mater 118:1–38
  • 47. Yun Y, Kim H, Kim H, Park K (2005) Ab initio calculations of strongly correlated electrons: antiferromagnetic ground state of UO2. Nucl Eng Technol 37;3:293–298
  • 48. Zimmermann H (1978) Investigations on swelling and fission gas behaviour in uranium dioxide. J Nucl Mater 75:154–161
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0017-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.