PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Calorimetric studies of the energy deposition on a material surface by plasma jets generated with QSPA and MPC devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
10th International Workshop and Summer School "Towards Fusion Energy", 12-18 June 2011, Kudowa Zdrój, Poland
Języki publikacji
EN
Abstrakty
EN
Studies of the energy deposition by plasma jets incident on a material surface are of topical interest for both the fusion and plasma technology applications. In this paper the results are reported of a comparative study of plasma energy deposition on different material surfaces exposed to plasma jets of various duration and energy density, generated using the QSPA Kh-50 and the MPC devices. The spatial distribution of plasma energy density and the heat load on the surface were measured with a movable calorimeter. The measurements demonstrate that in the case of an exposure to QSPA plasma jets the absorbed heat load is approximately equal to 55-60% of the energy in the incident plasma jet. In the case of plasma jets generated using the MPC device the heat load on the target surface and was practically the same as for the QSPA jets, and additional shielding effects were found to be negligible due to the short duration of plasma jets.
Czasopismo
Rocznik
Strony
49--53
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
  • Institute of Plasma Physics, National Science Center, Kharkov Institute of Physics and Technology (NSC KIPT), 1 Academicheskaya Str., Kharkov, 61108, Ukraine, Tel.: +38 057 335 6726, Fax: +38 057 335 2664, chuvilo@kipt.kharkov.ua
Bibliografia
  • 1. Chebotarev VV, Garkusha IE, Garkusha VV et al. (1996) Characteristics of transient plasma layers produced by irradiation of graphite targets by high power quasi-stationary plasma streams under the disruption simulation conditions. J Nucl Mater 233/237:736–740
  • 2. Chebotarev VV, Garkusha IE, Ladygina MS et al. (2006) Investigation of pinching discharges in MPC device operating with nitrogen and xenon gases. Czech J Phys 56:335–341
  • 3. Garkusha IE, Arkhipov NI, Klimov NS et al. (2009) The latest results from ELM-simulation experiments in plasma accelerators. Phys Scr 138:014054 (6 pp), doi:10.1088/0031-8949/2009/T138/014054
  • 4. Garkusha IE, Bandura AN, Byrka OV et al. (2009) Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs. J Nucl Mater 386/388:126–131
  • 5. Garkusha IE, Bazylev BN, Bandura AN et al. (2007) Tungsten melt layer erosion due to JxB force under conditions relevant to ITER ELMs. J Nucl Mater 363/365:1021–1025
  • 6. Landman IS, Pestchanyi SE, Igitkhanov Y, Pitts R (2010) Modeling of wall and SOL processes and contamination of ITER plasma after impurity injection with the tokamak code TOKES. Fusion Eng Des 85:1366–1370
  • 7. Landman IS, Pestchanyi SE, Safronov VM, Bazylev BN, Garkusha IE (2004) Material surface damage under high pulse loads typical for ELM bursts and disruptions in ITER. Phys Scr 111:206–212
  • 8. Loarte A, Saibene G, Sartori R et al. (2003) Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER. Plasma Phys Control Fusion 45:1549–1569
  • 9.Tereshin VI, Chebotarev VV, Solyakov DG et al. (2002) Powerful quasi-steady-state plasma accelerator for fusion experiments. Braz J Phys 32:165–171
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0017-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.