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Introduction 

A recently proposed approach to the inversion 
of polarimetry data [4, 5] is based on the angular 
variable technique (AVT) [2]. In this paper we outline an 
alternative method for this task, based on the gradient 
approach. 

Basic equations for the inversion are presented 
in section ‘The algorithm for inversion’. A numerical 
procedure for finding solutions of these equations by 
means of the gradient method is described in section 
‘Gradient method for inversion of the polarimetry data’. 
Section ‘Numerical example’ contains a numerical ex-
ample illustrating implementation of the new inversion 
procedure. In ‘Discussion’ we discuss some aspects of 
the new approach. 

The algorithm for inversion 

The algorithm for inversion proposed in [4, 5] is based 
on the angular variables technique (AVT), which 
involves angular variables ψ (the azimuthal angle) and 
χ (the ellipticity angle). The evolution equations for 
the angular parameters of the polarization ellipse in 
a magnetized plasma have the form [2] 

  
(1)

The derivatives of ψ and χ are taken over the arc 
length along the ray, denoted σ: 
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The constans Ω1 and Ω2 are plasma parameters that 
characterize the Cotton-Mouton effect (see [10]) 

  
(2)

and Ω3 characterizes the Faraday effect [10]:

(3)   Ω3 = ½ k0XY cos α|| 

The parameters Ω1,2,3 depend on the wave number 
k0 = ω/c of the sounding beam, the longitudinal (α||) 
and transverse (α⊥) angles characterizing orientation 
of the beam relative to the static magnetic field B0 [2], 
and dimensionless plasma parameters 

(4)  

Because of dependence on the squared plasma fre-
quency ω2

pl, the parameter X is in effect proportional to 
the electron density Ne, and because of the dependence 
on the electron cyclotron frequency the parameter Y is 
proportional to the magnetic field B, i.e. 

(5)     X ∝ Ne,   Y ∝ B 

Following the knowledge-based approach [1, 2] we 
write the parameters X and Y in the form 

(6)  X(σ) = X– · x(σ),    Y(σ) = Y– · y(σ) 

where X and Y are the maximum values and x(σ), y(σ) 
are normalized profiles of the electron density Ne and 
the magnetic field B along the ray. 

The profiles x(σ) and y(σ) are assumed to be ex-
tracted from the Thomson and lidar scattering, and 
external magnetic measurements. 

From Eq. (1) we obtain angular variables ψ and χ 
as functions of plasma parameters X and Y: 

(7)         ψ = ψ(X
–,Y–),   χ = χ(X

–,Y–) 

Equating solutions (7) to the experimental values 
ψexp and χexp we come to the following set of equa-
tions: 

(8)  

On the basis of these equations we may construct 
an algorithm that gives the plasma parameters X–,  and 
Y
– that correspond to the experimental values ψexp and 
χexp for the given normalized profiles x(σ) and y(σ): 

In fact, this set of equations may be reduced to the 
following single equation 

(9)  Φ(X
–,Y–) = [ψ(X

–,Y–) – ψexp]2 + [χ(X
–,Y–) – χexp]2 = 0 

The function Φ(X
–,Y–) will be named hereafter as the 

“mismatch function”. 

Equation (9) admits an analytic solution only in 
the case of small ψexp and χexp [4] when the Eq. (1) can 
be solved using perturbative approach. 

In the general case a numerical approach has to be 
pursued. In section ‘Gradient method for inversion of 
the polarimetry data’ we outline the gradient method 
for inverting the system (8) and obtaining the param-
eters X– and Y–. 

Gradient method for inversion of the polarimetry 
data 

Let R = ixX
– + iyY

– be a vector in the (X
–,Y–) plane. 

Using this vector, we can rewrite the mismatch function 
defined by Eq. (9) as follows: 

(10)  Φ(R) = [ψ(R) – ψexp]2 + [χ(R) – χexp]2 = 0 

The numerical procedure for solving this equa-
tion by the gradient method [9] is based on successive 
displacements of the point R by small a step ΔR in the 
direction opposite to the gradient of the mismatch 
function 

(11)  

Let ΔRG be a displacement in the direction of the 
gradient G = ∇Φ: 

(12)   ΔRG = |ΔR|G/|G| 

Then a small step in the opposite direction will be 

(13)   ΔRG = –|ΔRG|G/|G| 

The components GX and GY of the vector G can be 
estimated numerically via finite differences 

  
(14)

so that 

(15)  

Starting with a trial point R0 = (X
–

0,Y
–

0) and moving 
in the direction opposite to G = ∇Φ we arrive at the 
point 

(16)   R1 = R0 – |ΔR|G/G| 

At this point the mismatch function Φ(R1) takes 
the value 

(17)          Φ(R1) = Φ(R0) – |ΔR||G|

Repeating this operation several times we move 
close to the stationary point R S = (X

–
S,Y

–
S), where 

Φ(RS) = 0. This procedure will be convergent if 
the increment |ΔR||G| of the function (9) does not 
exceed Φ(R0): 

(18)   |ΔR||G| ≤ Φ(R0) 
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In what follows we select the step |ΔR| according 
to condition 

(19)   |ΔR||G| = ½ Φ(R0) 

Qualitatively, the trajectory R0 → R1 → R2 → … → 
RS on the (X

–,Y–) plane looks as shown in Fig. 1. 
According to Fig. 1, the piece-wise trajectory tends 

to the stationary point (X
–

st,Y
–

st), where Eqs. (8) or (9) 
are satisfied. 

(20)  

Numerical example 

In this Section we demonstrate the efficiency of the 
suggested method in the simplest magnetic configu-
ration, when the sounding ray lays in the horizontal 
(equatorial) plane of the toroidal system. In this case 
the influence of the poloidal field is negligible and it 
is enough to take into account only the toroidal field 
(see Fig. 2). 

We solve Eq. (1) with the following values of param-
eters, typical for the ITER project [11]: 
i. The maximum value of magnetic field is assumed 

to be B0 = 5.3 T, and the magnetic profile y(σ) 
is supposed to correspond to the field of a toroidal 
solenoid 

 (21)  

 where rmin is the minor radius of the toroidal cham-
ber. 

ii. The sounding frequency is assumed to be ω = 
1.5 × 1013 Hz. The corresponding wavelength 
λ = 125 μm is comparable to the wavelength of 
195 μm that had been used on JET. 

iii. The angle between the ray and the magnetic field vec-
tor B is assumed to be 88.2°, so that cosα = 0.031. 

iv. The maximum electron density Ne
max is assumed to be 

1014 cm–3. The density profile x(σ) is approximated 
by the Gaussian function 

 (22)              x(σ) = exp[–(σ – σ0)2/g2] 

 with g = 3. We have chosen the Gaussian profile (22) 
for illustrative purpose only. In a real plasma the 
profile x(σ) should be extracted from the Thomson 
or lidar scattering data. In principle, the profile x(σ) 
could be bimodal, that is with two local maxima. 

v. The values of azimuthal and ellipticity angles, simu-
lating the results of experimental measurements are 
obtained from Eq. (1) with the initial values ψ(σ = 
0) = π/4 and χ(σ = 0) = 0, as it is frequently done 
in polarimetry. 

vi. The inner radius of the toroidal chamber is assumed 
to be rmin = 2 m and the external radius is equal to 
rmax = 8 cm, so that the length of the ray path inside 
the chamber is 6 m. The ray crosses the axis of the 
toroidal chamber at an angle α = 88.2°, so that cosα 
= 0.031. Under these conditions the contributions 
from the Faraday and the Cotton-Mouton effects are 
comparable. Thus, the method of inversion is valid 
even if neither the Faraday nor the Cotton-Mouton 
effect are small. 

vii. The parameters X–st and Y–st, corresponding to the 
maximum values of magnetic field B = 5.3 T and 
the electron density Ne = 1014 cm–3, are found to be 
X
–

st = 0.0014, Y–st = 0.063. The starting values X–0 
and Y–0 were approximately 30–40% smaller than 
the stationary values Xst and Yst. 
The values obtained for the parameters X, Y and 

the mismatch function Φ(X
–,Y–) in this numerical proce-

dure are presented in Table 1, and the first three steps of 
the iteration on the (X,Y) plane are shown in the Fig. 3. 

After the third step we are so close the real values 
that points corresponding to further steps would be 
practically invisible in the scale of the figure. 

According to Table 1, the iterative procedure con-
verges to the stationary point X–st = 0.0014, Y–st = 0.063, 
relatively fast, so that the relative deviations |X

– – X–st|/
X
–

st and |Y
– – Y–st|/Y–st become smaller than 2–3% already 

after 3–5 iterations. 
Thus the gradient method used jointly with the 

knowledge-based model of the toroidal plasma provides 
an effective method for inversion of polarimetric data. 

Discussion 

1. Accounting for the poloidal magnetic field. By ne-
glecting the poloidal field in the equatorial plane 
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Fig. 1. Piece-wise linear trajectory R0 → R1 → R2 → … → RS 
in the (X

–
,Y
–

) plane generated using the gradient method. 

Fig. 2. The path of the sounding ray (bold dashed line) in the 
equatorial plane of a tokamak. Here rmin and rmax are the inner 
and the external radii of the toroidal chamber. 
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of the toroidal system we introduce only an insig-
nificant error in polarimetry effect: as was shown in 
[3], the poloidal field is responsible only for 3–6% 
of the Cotton-Mouton effect and does not affect 
the Faraday effect in the geometry selected for this 
analysis. 

2. The helical structure of magnetic lines, arising 
from the interaction of toroidal and poloidal fields. 
Experimental measurements of this structure can 
hardly be performed at present time. A reasonable 
solution to this problem might be to combine the 
experimental and theoretical values in the spirit of 
EFIT program [1, 6–8], which fits theoretical model 
of the equilibrium plasma to all accessible data. The 
inversion procedure for polarimetry data outlined 
above might be one of the steps in this direction. 

3. Application of the Stokes vector formalism (SVF) 
in the inversion of polarimetry data. The method 
proposed in [4, 5] and the numerical procedure 
presented here are based on the angular variables 
technique (AVT), introduced in [2]. In principle, 
the authors hope that a similar approach can be 
implemented also in framework of the SVF ap-
proach with the squared difference [s(X

–,Y–) – sexp]2 
between theoretical and experimental values of the 
Stokes vector playing similar role as the mismatch 
function in the gradient method. 

4. Sensitivity to experimental uncertainties. The mea-
sured angular parameters ψexp and χexp are known 
with finite accuracy, reflected by the experimental 
uncertainties δψexp and δχexp. The values δNe and δB 
obtained from the inversion procedure depend also 
on the uncertainties in the Faraday and Cotton-
-Mouton effects, which are of comparable magni-

tude, and we may expect that the same is true for 
the relative uncertainties δNe/Ne and δB/B: 

(23)  

However, the situation will change if one of these ef-
fects is much weaker than other one. The uncertainties 
in inversion problem deserve a more detailed analysis in 
future studies both in the context of polarimetry and in the 
context of more general aspects of the EFIT approach. 

Conclusions 

In this paper we discussed properties of an unconven-
tional procedure for inversion of the polarimetry data 
for physical conditions characteristic for the ITER 
project. The fitting of the theoretical model to the 
experimental data is done numerically by the gradient 
method. It is shown that this gradient method provides 
acceptable accuracy of order 1–3% for 3–4 iterations. 
It is pointed out that this approach might be a helpful 
amendment to the EFIT approach. 
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