PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental results on advanced inertial fusion schemes obtained within the HiPER project

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
10th International Workshop and Summer School "Towards Fusion Energy", 12-18 June 2011, Kudowa Zdrój, Poland
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • 1. Antonelli LD, Batani D, Patria A et al. (2011) Laser-plasma coupling in the shock- ignition intensity regime.Acta Tech 56:T57–T69
  • 2. Atzeni A (1986) 2-D Lagrangian studies of symmetry and stability of laser fusion targets. Comput Phys Commun 43:107–124
  • 3. Atzeni A, Schiavi A, Califano F et al. (2005) Fluid and kinetic simulation of inertial confinement fusion plasmas. Comput Phys Commun 169:153–159
  • 4. Basov NG, Gus’kov SYu, Feoktistov LP (1992) Thermonuclear gain of ICF targets with direct heating of igniter.J Sov Laser Res 13:396–399
  • 5. Batani D (2011) Studies on fast electron transport in the context of fast ignitron. Nukleonika 56;2:99–106
  • 6. Batani D, Balducci A, Nazarov W et al. (2001) Use of low density foams as pressure amplifiers in EOS experiments with laser driven shock waves. Phys Rev E 63:46410
  • 7. Batani D, Koenig M, Baton S et al. (2011) The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes. Plasma Phys Control Fusion 53:124041 (13 pp)
  • 8. Baton SD, Santos JJ, Amiranoff F et al. (2003) Popesc Evidence of ultrashort electron bunches in laser plasma interaction at relativistic intensities. Phys Rev Lett 91:105001
  • 9. Betti R, Zhou Hou CD, Anderson KS, Perkins LJ, Theobald W, Solodov A (2007) Shock ignition of thermonuclear fuel
  • 10. Brenner CM, Badziak J, Baton SD et al. (2011) HiPER Vulcan Petawatt experimental campaign 2010 (Source 10 D. Batani et al. characterisation proton beams for fast ignition – VulcanPetawatt campaign August–September 2010). Internal Report
  • 11. Davies J, Fajardo M, Bendoyro R et al. (2010) Measurement of magnetic field. In: Proc of the LL2 Meeting and PALS10 Workshop, 22–24 September 2010. PALS Research Centre, Prague, Czech Republic
  • 12. Gartside LMR, Tallents GJ, Rossall AK et al. (2010) Extreme ultraviolet interferometry of warm dense matter in laser plasmas. Opt Lett 35;22:3820–3822
  • 13. Gizzi LA, Giulietti A, Giulietti D et al. (2007) Observation of electron transport dynamics in high intensity laser interactions using multi-energy monochromatic X-ray imaging. Plasma Phys Control Fusion 49:B221
  • 14. Koenig M, Faral B, Boudenne JM et al. (1995) Relative consistency of equation of state by laser driven shock waves. Phys Rev Lett 74;12:2260–2263
  • 15. LANL (1992) SESAME: The LANL equation of state database, Los Alamos National Laboratory, la-ur-92-3407
  • 16. Maire PH, Abgrall R, Breil J, Ovadia J (2007) A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J Sci Comput 29:1781–1824
  • 17. Nejdl J, Kozlova M (2009) Plasma density-gradient measurement using X-ray laser wave-front distortion. Proc SPIE, Vol. 7451, 745117
  • 18. Pérez F, Debayle A, Honrubia J et al. (2011) Magnetically- guided fast electrons in cylindrically-compressed master. Phys Rev Lett 107:065004
  • 19. Pérez F, Koenig M, Batani D et al. (2009) Fast-electron transport in cylindrically laser-compressed matter. Plasma Phys Control Fusion 51:124035
  • 20. Perkins LJ, Betti R, La Fortune KL, Williams WH (2009) Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility. Phys Rev Lett 103:045004
  • 21. Ramis R, Schmalz R, Meyer-Ter-Vehn J (1988) MULTI – A computer code for one-dimensional multigroup radiation hydrodynamics. Comput Phys Commun 49:475–505
  • 22. Robinson APL, Neely, AD, McKenna P et al. (2007) Spectral control in proton acceleration with multiple laser pulses. Plasma Phys Control Fusion 49:373–384
  • 23. Robinson APL, Sherlock M, Norreys PA (2008) Artificial collimation of fast-electron beams with two laser pulses. Phys Rev Lett 100:025002
  • 24. Santos JJ, Batani D, McKenna P et al. (2009) Fast electron propagation in high density plasmas created by shock wave compression. Plasma Phys Control Fusion 51;1:014005
  • 25. Santos JJ, Debayle A, Nicolai Ph et al. (2007) Fast-electron transport and induced heating in aluminium foils. Phys Plasmas 14:103107
  • 26. Shcherbakov VA (1983) Calculation of thermonuclear laser target ignition by focusing shock wale. Sov J Plasma Phys 9:240
  • 27. Tabak M, Hammer J, Glinsky ME et al. (1994) Ignition and high gain with ultrapowerful lasers. Phys Plasmas 1:1626
  • 28. Vauzour B, Pérez F, Volpe L et al. (2011) Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas. Phys Plasmas 18:043108
  • 29. Volpe LD, Batani D, Vauzour B et al. (2011) Proton radiography of laser-driven imploding target in cylindrical geometry. Phys Plasmas 18:012704
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0017-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.