PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion of Star-Branched Chains in a Nanochannel. A Monte Carlo Study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to determine the structure and dynamic properties of polymers systems in a random environment we developed and studied an idealized model. Properties of the model of confined linear and branched polymer chains were studied by means of the Monte Carlo method. Model chains were built of statistical segments and embedded to a simple cubic lattice. Then, the polymers were put into a tube formed by four impenetrable surfaces. A Metropolis-like sampling Monte Carlo algorithm was used to determine the static and dynamic properties of these model macromolecules. The influence of the size of the confinement (the tube diameter) and the chain length on polymer properties was studied. The universal behavior of confined polymer linear chains under consideration was found and discussed. The long-time (diffusion) dynamic properties of the system were also studied. The differences in the mobility of chains depending on the number of branches was shown and discussed – stars with an even number of arms exhibited the ballistic motion at certain conditions. The possible mechanism of the chain' motion was discussed.
Twórcy
autor
  • Department of Chemistry, University of Warsaw ul. Pasteura 1, 02-093 Warsaw, Poland, prom@chem.uw.edu.pl
Bibliografia
  • [1] E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore 1993).
  • [2] M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
  • [3] H.-W. Sun, S. Granick, Science 258, 1339 (1992).
  • [4] G. ten Brinke, D. Ausserre, G. Hadziioannou, J. Chem. Phys. 89, 4374 (1988).
  • [5] A. Milchev, K. Binder, Eur. Phys. J. B 3, 477 (1998).
  • [6] Y. Yoshida, Y. Hiwatari, Molec. Simul. 22, 91 (1999).
  • [7] D.V. Kuznetsov, A.C. Balazs, J. Chem. Phys. 113, 2479 (2000).
  • [8] N. Fatkulin, R. Kimmich, E. Fischer, C. Mattea, U. Beginn, M. Kroutieva, New J. Phys. 6, 46 (2004).
  • [9] J. Skolnick, A. Kolinski, Adv. Chem. Phys. 78, 223 (1990).
  • [10] A. Sikorski, P. Romiszowski, J. Chem. Phys. 116, 1731 (2002).
  • [11] A. Sikorski, P. Romiszowski, J. Chem. Phys. 123, 104905 (2005).
  • [12] K. Kremer, K. Binder, J. Chem. Phys. 81, 6381 (1984).
  • [13] Y.J. Sheng, M.C. Wang, J. Chem. Phys. 114, 4724 (2001).
  • [14] K. Avramova, A. Milchev, J. Chem. Phys. 124, 024909 (2006).
  • [15] J. Kalb, B. Chakraborty, J. Chem. Phys. 130, 025103 (2009).
  • [16] Z. Li, Y. Li, Y. Wang, Z. Sun, L. An, Macromolecules 43, 5896 (2010).
  • [17] R.M. Jendrejack, D.C. Schwartz, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 119, 1165 (2003). 44 P. Romiszowski, A. Sikorski
  • [18] J.L. Harden, M. Doi, J. Phys. Chem. 96, 4046 (1992).
  • [19] P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca 1979).
  • [20] G. Morrison, D. Thirumalai, J. Chem. Phys. 122, 194907 (2005).
  • [21] D.S. Cannell, F. Rondelez, Macromolecules 13, 1599 (1980).
  • [22] A. Sikorski, Macromol. Theory Simul. 2, 309 (1993).
  • [23] M. Schmiedeberg, V. Yu. Zaburdaev, H. Stark, J. Stat. Mech. P12020 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0016-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.