PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the application of compressive sampling techniques to high throughput data in computational genomics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the advent of high throughput experiments in genomics and proteomics, the researcher in computational data analysis is faced with new challenges, both with regards to the computational capacities and also in the probabilistic/statistical methodology fields; in order to handle such massive amounts of data in a systematic coherent way. In this paper we describe the basic aspects of the mathematical theory and the computational implications of a recently developed technique called Compressive Sampling, as well as some possible applications within the scope of Computational Genomics, and Computational Biology in general. The central idea behind this work is that most of the information sampled from the experiments turns out to be discarded (for being non-useful) in the final stages of biological analysis, hence it would be better if we could find an algorithm to remove selectively such information in order to get rid of the computational burden associated with processing and analyzing such huge amounts of data. Here we show that a possible algorithm for doing so it is precisely Compressive Sampling. As a working example, we will consider the data-analysis of whole-genome microarray gene expression for 1191 individuals within a breast cancer project.
Rocznik
Strony
177--192
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Computational Genomics Department National Institute of Genomic Medicine Periférico Sur 4124, Piso 5, 01900, México City, México, ehernandez@inmegen.gob.mx
Bibliografia
  • 1. K. Baca-López, E. Hernández-Lemus, M. Mayorga: Information-theoretical analysis of gene expression data to infer transcriptional interactions, Rev. Mex. Fis. 55, 6, 456-466,(2009).
  • 2. B.M. Bolstad, R.A. Irizarry, M. Astrand, T.P. Speed: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics 19, 2, 185-193, (2003).
  • 3. S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, (2004).Available online at http://www.stanford.edu/ boyd/cvxbook/.
  • 4. E.J. Candes, J. Romberg, T. Tao: Signal Recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59, 8, 1207-1223, (2005).
  • 5. E.J. Candes: Compressive Sampling, Proceedings of the International Congress of Mathematicians, European Mathematical Society, Madrid, Spain, 1-20, (2006).
  • 6. E.J. Candes, J. Romberg, T. Tao: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Information Theory 52, 2, 489-509, (2006).
  • 7. D.L. Donoho, M. Vetterli, R.A. DeVore, I.C. Daubechies: Data Compression and Harmonic Analysis, IEEE Trans. Information Theory 44, 6, 2435-2476, (1998).
  • 8. D.L. Donoho: Compressed Sensing, Technical report, Stanford University, (2004). A revised version appears in Donoho, D.L., Compressed Sensing, IEEE Trans, Information Theory 52, 4, 1289-1306 (2006).192
  • 9. R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Scherf, T.P.Speed: Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics 4, 2, 249-64, (2003).
  • 10. A. Jerri: The Shannon Sampling Theorem-Its Various Extensions and Applications: A Tutorial Review, Proceedings of the IEEE, 65, 11, 1565-1595, (1977).
  • 11. A. Jerri: Correction to The Shannon sampling theorem-Its various extensions and applications: A tutorial review, Proceedings of the IEEE, 67, 4, 695, (1979).
  • 12. R.E. Kahn, B. Liu: Sampling representation and optimum reconstruction of signals, IEEE Trans. Inform. Theory, 11, 3, 339-347, (1965).
  • 13. P. Langfelder, S. Horvath: Eigengene networks for studying the relationships between co-expression modules, BMC Systems Biology, 1:54, (2007)doi:10.1186/1752-0509-1-54 (see particularly the supplementary material available at http://www.biomedcentral.com/content/supplementary/1752-0509-1-54-s7.pdf and the Code for the simulations available at: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/EigengeneNetwork/).
  • 14. T.H.E. Meuwissen, M.E. Goddard: Bootstrapping of gene-expression data improves and controls the false discovery rate of differentially expressed genes, Genetics Selection Evolution 36, 2, 191-205, (2004) doi:10.1186/1297-9686-36-2-191.
  • 15. H. Nyquist: Certain topics in telegraph transmission theory, Trans. AIEE, 47, 2, 280-305,(1928). Reprinted as a classic paper in: Proc. IEEE, 90, 2, 276-279,(2002).
  • 16. C.E. Shannon: Communication in the presence of noise, Proc. Institute of Radio Engineers 37, 1, 10-21, (1949). Reprinted as a classic paper in: Proc. IEEE, 86, 2, 447-457,(1998).
  • 17. D.E. Todd: Sampled data reconstruction of deterministic band limited signals, IEEE Trans. Inform. Theory, 19, 6, 809-811, (1973).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0012-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.