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Abstract:
The controller parameterization is often carried out by 
applying basic empirical formulas within an integrated 
automatic design. Hence, the determined settings are 
often insufficiently verified by the resulting system be-
havior. In this paper an approach for the controller pa-
rameterization by using methods of simulation based 
optimization is presented. This enables the user to define 
specific restrictions e.g. the complementary sensitivity 
function (CSF) to influence the dynamic behavior of the 
control loop. Furthermore it is possible to choose alter-
native optimization criteria. A main influence factor for 
practical offline as well as controller internal optimiza-
tion methods is the execution time, which can be reduced 
by applying a hybrid optimization strategy. Thus, the 
paper presents a performance comparison between the 
straight global Particle-Swarm-Optimization (PSO) al-
gorithm and the combination of the global PSO with the 
local optimization algorithm of Nelder-Mead (NM) to a 
hybrid optimizer (HO) based on examples.

Keywords: controller parameterization, simulation based 
optimization, particle swarm optimization, Nelder-Mead

1. Introduction
In the field of operations research a large number of 

methods were developed to support decision-making 
processes. It has been proven, that there is a wide field of 
application. In this paper a brief introduction using these 
methods for mechatronic controller parameterization is 
given with the goal of increased speed using a hybrid op-
timizer. In section 2 the basics of simulation optimization 
as well as the used optimization algorithms are stated. 
Subsequently in section 3 the application for controller 
parameterization is briefly introduced for two examples. 
The structure and functionality of the hybrid optimizer is 
the subject of section 4. A performance evaluation of the 
hybrid optimizer is done in section 5. The paper closes 
with a comparison and conclusions given in section 6.

2. Simulation based controller parameteri-
zation

Generally, simulation based optimization is a meth-
odology of searching for the global extremum of an ob-
jective function by the coupling of a simulator with an 
optimizer [1]. It results in a cyclic sequence between the 
optimizer and the simulator.

The optimizer determines a possible solution and 
passes it to the simulator for evaluation. According to the 

result of the simulator the optimizer calculates a possible 
better solution. The core of the simulator is a model of 
the entire system which is examined. Therefore, an opti-
mization problem (eq. 1) has to be solved [1].
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F(), called fitness function [2], is a real-valued func-
tion which represents the evaluation of the actual solu-
tion. In general, the implementation of constraints is 
realized by using punishment values. If a constraint is 
violated, a punishment value is added to the evaluation 
of the actual solution. Therewith it is depreciated and 
avoided by the optimizer. The evaluation of a solution is 
calculated in accordance to equation 2.
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Optimization techniques are divided into global and 
local algorithms [3]. The objective of global optimiza-
tion is to find the global extremum over the entire func-
tion space. In contrast, local methods start from a defined 
point in the search space and try to determine a better 
solution. According to [4] simulation based optimization 
could be used to adjust controller parameters considering 
definable constraints. 

It exits a large number of optimization algorithms 
for different application fields. Hereafter the PSO and 
the NM algorithm are described. 

1.2. Particle-Swarm-Optimization
PSO is a common heuristic technique [5], which is 

based on the simulation of the movement of herds or 
swarms. An individual of a swarm is called particle. The 
trajectory of each particle depends on the movement of 
the other individuals of the swarm and random influ-
ences. The advantages of the algorithm are among other 
things its simple structure, no need for gradient informa-
tion and its performance. The position of every particle  
in the -th step is described by the vector . The position 
of each particle in the ()-th step is update according to 
equations 3 and 
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Where c1, c2 and w are positive constants,  r k1, i , r k2, i , and  
are two random values in the range [0, 1]. The term  xi  best, k

  
represents the best previous position of particle i till step 
k and  as the best known position among all parti-
cles in the population. Therefore, xi  best, k is called “simple 
nostalgia” because the individual tends to return to the 
place that most satisfied it in the past. The term   
realizes the publicized knowledge, which also every in-
dividual tends to [6].

2.2. Nelder-Mead
The NM algorithm (or simplex method), which was 

originally presented in [7], uses a geometric structure, the 
simplex, with  points in the search space with n +1 the 
dimension, e.g. for  n = 2 the simplex is a triangle. 

At the beginning the simplex is constructed around a 
committed start point. The edges of the simplex are called 
vertex and have to be arranged equidistant from each oth-
er. The basic principle of the algorithm is the modifica-
tion of the simplex towards the extremum. In general this 
is achieved by replacing the worst vertex by a better one 
using four functions: reflect(), expand(), contract() and 
shrink(). A detailed description of the algorithm can be 
found in [8].

3. Optimization Problem

3.1. Control Loop Dynamic
Assuming the stated closed loop system structure [9], 

the system behavior is described with a transfer function 
SG  (eq. 5).
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It is supposed to use a PID controller RG  in the addi-
tive structure (eq. 6).
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Fig. 1. Comparison of parameter settings

In Figure 1 possible attainable transition functions of 
a PT3 plant (K=0.6, a1= 0.92, a2= 0.234, a3=0.018) with 
a PID controller are shown. The main optimization crite-
rion is the control area. No constraints were defined. The 
results of the optimization process are KR= 12.327, KI = 
17.936 and KD = 2.07.

To reduce the overshoot of the system the CSF T(s) 
could be used [10]. The mathematical structure is:
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It allows an evaluation of the influence of changes in 
the command signal. By specifying the CSF it is possible 
to affect the dynamic of the control loop. Therefore, by 
setting
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the permissible amplification is limited. The new results 
are KR= 12.327, KI = 17.936 and KD = 2.07. As expected 
the overshoot is reduced (Figure 2) while the rise time 
increases.

Fig. 2. Comparison of parameter settings

3.2. Energy Consumption
As an alternative to the optimization based on the CSF 

(section 3.1), the approach can also be used to minimize 
other criteria, such as the energy consumption of a servo 
drive. To illustrate this, a PI velocity controller according 
to equation 9 is used.
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The model of the controlled system includes the closed 
current loop and the total moment of inertia. The param-
eter identification was carried out in [11] and leads to 
the following first order integral plus dead time system 
(FOIPD) (eq. 10).
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To achieve a higher flexibility in formulating the quan-
tification factors (control effort, control area, disturbance 
area) and the penalty (max. overshoot = 15%), the simu-
lator was realized in MATLAB® Simulink®. Focusing 
on the energy consumption, the control effort was chosen 
as main criterion. The resulting controller parameteriza-
tion as well as the results of the automatic controller tun-
ing system, included in the servo drive system, are listed 
in Table 1.
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Table 1. Controller parameters

Method KP [Nm s/rad] TN [ms]

Automatic Tuning 
(SIEMENS) 1.309 8.73

Optimizer 0.9 5.2

Fig. 3. Control effort step response

Figure 3 shows the resulting step responses and the in-
tegrated control effort. Notice that the overshoot reaches 
the predefined limit without exceeding it. Furthermore 
the reduction of the energy consumption is visible in the 
time plot, while the settling times of both variants are 
comparable.

4. Hybrid optimizer 
In this paper the HO is a combination of the global 

PSO and the local NM algorithm with the objective of 
better performance in comparison to a standalone opti-
mization approach.

The operation of the algorithm is the following: First 
the PSO is performed with a small number of calcula-
tions and then terminated. Hence, the PSO is only used 
for global exploration of the search space. Subsequently 
three instances from NM algorithm start from the best, 
the 3rd best and the 5th best point examined by the PSO 
realizing a local search. The solution of the optimization 
is the best result of the three NM instances (Figure 4). 

The reason behind starting the local search from dif-
ferent points is the robustness against local extremes. It 
has been investigated, that if only one instance is used, 
the hit rate of the HO to find the extremum is reduced 
[12].

Fig. 4. Structure of hybrid optimizer

5. Performance comparison
The performance tests have been carried out using 

a self developed modular optimization application writ-
ten in C# using VisualStudio 2010 supporting different 
optimization algorithms. The simulation models were 
implemented in MATLAB®. 

Four different transfer functions (table 2) were utilized 
to compare the required number of calculations to de-
termine the global extremum with a defined tolerance to 
the best known solution. For every transfer function the 
optimization was performed thirty times.

As the results in table 1 show the HO only requires 
6% to 69% invocations of the simulator in contrast to the 
standalone PSO. This reduces the execution time of an 
optimization run tremendous. Furthermore the HO was 
always able to detect the global extremum. The reason 
for the high number of necessary calculations for sys-
tem three can be justified with the complex shape of the 
search space. The gradients around the global extremum 
are very high and therefore the location of the extremum 
is very small.

Table 2. Overview of chosen test functions

Controlled
System

Transfer  
function

Calculations
PSO Hybrid

1 (PT3)
K=1, a1 = 2, 
a2 = 2, a3 = 1 1737 342

2 (PT3)
K=1, a1 = 3.1, 

a2 = 2.3, a3 = 0.2 2007 459

3 (PT3)
K=1, a1 = 2, 
a2 = 2, a3 = 3 23459 1464

4 (PT2)
K=1, a1 = 3, 

a2 = 2 542 374

6. Conclusion
The combination of the PSO and NM to a hybrid op-

timizer increased the performance dramatically in com-
parison to the standalone PSO algorithm. The advantage 
of the HO is the switch from the well performing global 
optimization technique of the PSO to the NM, which is 
more effective in local exploration. Even with the three 
instances of the NM the required number of the calcula-
tions is still smaller. 

This is essential to enable online and real time appli-
cations. But furthermore investigations in adjusting the 
tuning parameter of the algorithms concerning the prob-
lem of controller parameterization must be carried out. 
Moreover even different optimization techniques e.g. 
the Newton’s method, genetic algorithms and different 
combinations to a hybrid optimizer must be investigated. 
Furthermore it is conceivable to use the methodology of 
simulation based optimization for tuning more complex 
systems like a controller cascade with filters.
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