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Abstract:

Adaptive pole-placement control for the plant with
unknown orders and coefficients of its model is presented
in the paper, in an on-line approach. In order to adapt to
the plant, the considered controller changes its structure
and parameters, along with the identification process.

In order to combine structural and parametric identifi-
cation, the approach presented in [5] has been used, with
the simulation runs performed for continuous plant and a
discrete-time controller and identification algorithms.
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1. Introduction

Full knowledge of the plant is required to design the
classical controller with parameters computed on the basis
of well-known tuning rules, such as of Ziegler-Nichols for
PID controllers. A good choice of controller parameters
assures achieving expected performance of the control
system. Because the tuning is performed for a specific plant
which structure (e.g., order) or parameters may change
with time, the computed controller parameters may turn
out to be inappropriate. In such a case, one uses adaptive
control, tuning the controller to improve the performance
by using information about current polynomial orders and
estimates of plant parameters.

The paper presents the topic of adaptive control with es-
timation of parameters and orders of the plant polynomials
in the reference signal tracking task in a fully discrete-
time control system. The control algorithm combined with
estimation yields time- and structure-varying controller
with parameters tuned on-line to the current structure and
properties of the plant.

2. General model of the plant

Let G(¢ 1) and H (g~ ') be certain transfer functions
and ¢~ ! be a one-sample shift operator, ¢~ y; = ;1.
The general structure of the model [3, 4]

Glqg ue+ H(g & =
B(g™) Clqg™)
)

Yy =

ey

T AlgY uH“LA(q*1 St

where G(g~!) is a transfer function of control circuit, and
H(q™1) of disturbance circuit, can be put in the form

A(g Yy = B(g Hug—a + Clg™ )&,
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where d is a dead-time and polynomials from (2) are given
as:

Alg™h) L4+aig +- - +anag ™, 3
B(g™Y) = bo+big 4+ +bupg "B, @)
Clg™h) = 14+eaqg '+ +ecqg ™. 6

The basic model considered in the paper is the auto-
regressive model with moving-average with auxogenous
input (ARMAX) as in (2). A special form of ARMAX will
be of interest here, namely CARMA model.

3. Pole-placement controller

The considered controller is to assure appropriate place-
ment of poles of discrete-time system (with discrete-time
controller and discrete-time model of the plant). Such an
adaptive controller can be put in RST form with control
signal

up = (1 — f?(cfl)) ue = S(g )y +T(g Hre, (6)

where 7; is the reference signal tracked by ;.
Having omitted estimate symbols, the controller poly-
nomials:

L4+rig ' A rppra1g "B (D)

—nA+1 . (8)

S = so+sig "+ +sna1q

Using the knowledge about plant polynomials A(g~!)
and B(q~ '), known delay d and choosing closed-loop
characteristic polynomial

AM(q_l) =1+ anlq—l 4+ 4+ aJ\LnAMq_nAM 9)
one can introduce Diophantine equation

Al DR +a "BlaHS(¢") = Au(q™),
(10)
with

 Ap(1)
- B(1

By solving this equation one obtains controller param-
eters, what in turn allows the current control sample to be
computed. Having substituted control law to the plant equa-
tion and using the Diophantine equation one can obtain
closed-loop transfer function

v _ ¢ 'Blg)T(q)

Tt Ap(g) 7

from which it can be seen that closed-loop poles are in
prescribed locations.

T(¢ ") (11)
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The general solution of the Diophantine equation for
given nA and nB is

-1
Wrs =W 4pWaya,

where:
1 0 0 0 0 7
a1 1
a2 a1 0 0
ag 0 bo 0 0
W ap = : -l b'l bo : €
GnA La : by .0
0 an A a9 an bo
0 0 an bl
0 0 - apa| O s bug |
wRS = [7‘17 5y TnRy, S0, ", snS]T ) (13)
wA}\{A = [aM,l_alv ap 2 — @2, - 707 Tty O]T (14)
The parameters of A(q~1) are put in the first n.R columns

of W 4p, and the zero matrix in right upper corner has
the (d — 1) x (nS + 1) dimension.

4. Formulation of the problem

The main problem is given the triple (nA, nB, nC)
of model orders and the current estimate (21), to find the
improved model for which no improvement in polynomial
orders are unnecessary. Subsequently, for such a model
the adaptive pole-placement discrete-time controller of the
form (6) has to assure tracking properties for the discrete-
time model of the plant (2).

5. Estimation of orders and parameters for
linear plants in ARMAX form [5]

5.1. Preliminaries

The algorithm has been designed for ARMAX-type
plants but by omitting the information about C'(¢~!) poly-
nomial one can use the information concerning A(q~!)
and B(q™1).

The method will be cited in brief, the complete algo-
rithm can be found in [5]. It requires the following assump-
tions:

— polynomials A(g~1), B(¢~1), C(q~!) are co-prime and
their leading coefficients are non-zero,
— positive-real condition is satisfied,

— true polynomial orders (nA, nB, nC') belong to known
and finite set

M= {(n;4, nB, nAC):OgnAA < nA°,
ogn]BgnBO,ognbgnCO},

where nA°, nB°, nC?° are maximal assumed orders.

5.2. Recursive estimation method

Let the regression vector

o

ft = [yt—la Yt—2, -+ -y Yt—n Ao,
Ut—dy Ut—d—1y -+ -y Ut—d—nB°;
T
Et—1y Et—2y ++ EtfnCO] (15)

correspond to the information gathered for maximal poly-
nomial orders and ¢, is computed as in RELS algorithm
based on equations [4]:

s =y ¢ t>0,5=0(t<0),06)

0, = 071 +ke, (17)

LS %’ (18)
1+ 95" Py

P; = Py, -k Py, (19)

The arbitrary vector Q o (fort = 0) is of size h = nA° +
nB +nC° + 1 and Pg = hl. Vector of estimates

>

t = [—al,t, —Q2,t, -+ —AnAot,
bo,h bl,tv RS b'n,Bo,tv
A - - T
Clity oty - vy Croo ) (20)

is obtained from ELSRO [4] algorithm (16)—(19) (extended
least-squares in reducing orders) for overparametrised
model.

The ELSRO estimate

A(nAA, anb) . “ ~

Qt = [_al,t7 —a2ty - -, _an;q’ta
bO,ta bl,t; R bnAB7t7
A R T
it Coty oy Gyl 2n

of the vector of plant parameters at time ¢ is given by

~(nA,nB nC)
Q
¢ —1
T ]
E nA nB,nC) (nA, nB,nC) i %
Zi h
i=1
t
A, B
E (n nB,nC) i, (22)
and
nA,nB,nC) __
f(t ) - [yt—b Yt—25 -5 Ye_pas
Ut—dy Ut—d—1y -+-5 Uy_gq_ B>
(WA, nB,nC) _(nA,nB,nC)
€11 » Ep—2 ’
(A, nb, nC)1T
& ] (23)
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The estimate (22) can be recursively computed from
the algorithm:

(nA,nB, nb)
£ _

nA nB nC ~ ~ -~

o QBT B0 s
nAAnB,nC

ES ) =

P(nAA, nB,nC) (nAA7 nB,nC)
t—1

—— (25
1+¢ (nA nB,nC) P(nA nB, nC’)i(tnA,nB,nC)
é(tnA,nB,nC) _

é(ﬁ‘i, nB,nC) n k(nA nB,nC) (nA nB,nC) @6
Pgnh, nB,nC) _ PECL?, nB,nc) .
(A, nb@(tnx, nB,nC) " pIAnBnC) oy

VA, n B, nC ~0
0" ) as a part of §, (see

(17)) and P(()”A nB,n0) _ mlI, where m = nA +nB +
nC +1<h.
Plant-model mismatching residual

with the initial condition § ,

(WA, nB,nC)
(o =

t T \?2
i=1

nAanC nA nB. n(
Y, — 20 )hA’ B

T o S
A(nA, B, nC) nA,nB, nC)é("Av nB,nC)
=t

;""" N (28)
can be recursively evaluated as
O_)gnzéx,nAB7 nC) _ O_(fA, nB,nC) +
(A, nB,ne) T ?
(yt _gnt SDIEyzA,nB,nC)) +
A(nAA,nAB,nAC)T (nA,nB,nC) (WA, nB, nC)
+AD] <N N -
with:
A nA nB,nC A w:A7 nB,nb ~ nA nB nC
Ad, b= L Gy

NEnA,nB,nC’) Ny_;,?,nB,nC) +

ggn:ax, nB, nz;)ggn;x, nB,nc) T 31
Ny B — g, (32)
ﬁ(tnA,nB,nc) _ ﬁ(;1141,7“9,710)_’_
gy, (33)
RGP~ g, (34)
Y\ = Yty Yo=0,
oA EnC) _ . (35)

(nA’',nB’,nC") (nA’',nB’,nC")

As a convention IV, and h
are, respectively, submatrix and subvector of
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and their values can
be obtained directly from IN E"A’"B’"C), Q(tnA’ nB,nC)
without additional computations.

Let for (nA, nB, nC) € . the information function
be given

NgnA,nB,nC) and h(tnA,nB,nC')

St(nAA7 nAB7 nAC,TLAA/, nB/, nb/) :O_gnA,nB,nC) —

O_EnAA,nAB,nAC) . ﬁt, (36)

where [3,, = a(log( )) and o > 0.

If (nA nB nC) (nA nB, nC), then the differ-

A nB  nC’ A, W B, nC
ence between residuals ot(n nB,nC) _ (" nB,nC) -

0, that is St(nA nB nC nA nB nC’ ) < 0,
thus the orders (nA, nB nC) should be modified to
(nAA/, nB/7 nb/)
5.3. Recursive algorithm of simultaneous estimation
of orders and parameters
The shortened algorithm for ARMAX model is cited
from [5]:
— step O (initialisation)
set the values of start t =
(nr > 0);
— step 1

0 and stop time ¢t =

set initial values of appropriate variables;
— step 2

stop if ¢ > tj, otherwise substitute ¢ := ¢ 4 1; evaluate

A, nBt,nCy) ~(nAy, By, nCl)
(n nnBenCo ang 0, for current plant

model on the basis of (24)—(27); compute O‘(nA nB,n0)

from (28) on the basis of (29) (35) with (n14t, nBt,
nC) substituted for (nA, nB, nC);

— step 3
if St(n}lt, nBt, nACt,nAAt — 1, nBt, nbt) < 0, then
drop the last parameter of polynomial A;

— step 4
if St(nAAt, nBt, nACt,nAAt, nB; — 1, n@t) < 0, then
then drop the last parameter of polynomial B;

— step S
if St(nAAt, nBt, nACt,nAAt, nBt, TLAC’t — ].) < 0, then
then drop the last parameter of polynomial C'

— step 6
go to step 2.

If the initial assumptions hold and initial orders have

been set as maximal, then estimates (nA;, nBy, nCy)
form monotonically non-increasing trains.

6. Simulation results

6.1. Discrete-time model of the plant

The plant can be described as first-order inertia with
discrete-time transfer function

i 16.5¢7 1
gt 7 37
ug  1—09¢ 1’ 37)

from which:
Al =1-09¢"", B(g')=165 (38)
and d = 1.
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Fig. 1. Simulation I
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6.2. Simulations

In order to verify the performance of simultaneous
order and parameter estimation algorithm, the following
simulations have been carried out in discrete-time adaptive
control system by stipulating the triplets (nA, nB, nC') or
plant orders:
D (3,4,1),

0, =[-0.5, —0.5, —0.5, —15, 10, —10, 5, —3, 2",

) (3,2,3),

0, =[—0.05, 0.8, 0.3, —15, 10, 1.2, 0.2, 0.2, 0.2]"

with attaching discrete-time transfer function in series

with plant
0.4

1—-0.6¢g71"’
and resulting transfer function of a additional inertia-
plant connection

y _ 165¢7" 04
w  1-09¢1 1-06¢g1
6.6¢71

1—1.5¢71 +0.54g72"

(39)

The reference has the same shape in all simulations and
ap = —0.908.

The estimates of C'(¢~!) during computations have
chosen the values close to zero (or equal to zero), and as
it has already been mentioned, the polynomial has been
ignored here.

Asitcan be seen in Fig. 1 for Simulation I, the algorithm
has caused overparametrisation of polynomial B with the
last three parameters almost equal to zero. In fact, one can
assume that the order or B is zero. The orders of plant
model changed their values twice (by this changing the
structure of the controller twice).

Having fixed the orders, it has taken a few sample times
to find improved estimates’ values in the initial stage. Large
changes in the reference signal caused the control input to
saturate on a certain level, leading to insufficient excitation
and poor tracking.

Nevertheless, as it can be seen, the tracking is of satis-
factory performance past the adaptation period (say, 50th
sample) and the values of parameters do not change.

In the case of Simulation II (Fig. 2), by initially choos-
ing high order values one could obtain acceptable tracking
performance in comparable time with respect to the pre-
vious simulation, but with appropriate order of B. The
structure of the adaptive controller changed three times
(model of the plant has changed). As in the previous simu-
lation, the model has been initially inaccurate, what has
caused control signals to saturate.

Articles

The performance of tracking is the same and with the
same prescribed dynamics as in the previous simulation —
the pole placement has been performed correctly.

7. Summary

The presented algorithm, as shown in the simulations,
allows one to estimate the orders of plant model polynomi-
als in a closed-loop system.

On the basis of numerous simulations and the first sim-
ulation included in the paper, it can be said that structural
identification is not flawless. A common case was that
estimation stopped with orders higher than real orders,
leading to overparametrised models, as in Simullation L.
Nevertheless, control performance in such a case does not
suffer from overparametrisation as much as in the case of
underparametrisation which leads to poor tracking.

It has been verified that the controller assures good per-
formance in a case of an unknown plant, assuring full adap-
tivity features. Since discrete-time system analysis allows
one to draw conclusions about behaviour of sampled-data
systems, one can expect that a sampled-data pole-placement
control for a real plant could have similar performance.

The conclusions drawn from this paper, have been ap-
plied to a real-time control of a servo drive with minimum-
variance controller (not a subject of this paper) and the
same identification algorithms, leading to comparable re-
sults in real-world experiment (for reference see [2]).
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