PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Postural Equilibrium Criteria Concerning Feet Properties for Biped Robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a study on the postural equilibrium conditions for biped robots. Criteria for dynamic walking, such as ZMP and CoP are introduced and their similarities discussed. We also introduce the effects of a compliant foot and take them into consideration during the evaluation of the criteria. A model of a planar biped is used to imitate the movements of a human subject as recorded by the VICON motion capture system. In order to estimate the criteria, body segments accelerations and ground reaction forces are needed. ZMP and CoP are analyzed during both single and double support phases for the model’s motion. A linear shift function is used to transport the load of the biped between the supporting legs during the double support phase. We compare simulated CoP trajectories obtained using a rigid foot and a compliant, deformable spring-damper system located between the ankle joint and the sole of the foot. It is seen that the foot’s deformation smoothes the CoP trajectory and improves the biped’s stability.
Słowa kluczowe
Twórcy
autor
  • Aeronautics and Applied Mechanics, Warsaw University of Technology, Warsaw, 00-665, Poland., jandro.glez@gmail.com
Bibliografia
  • [1] B. Borovac, S. Slavnic, “Design of multisegment humanoid robot foot”, Research and Education in Robotics EUROBOT 2008, vol. 33, Communications in Computer and Information Science.
  • [2] S.H. Collins, A.D. Kuo, “Recycling energy to restore impaired ankle function during human walking”, PLoS ONE, 5(2):e9307, 02/2010.
  • [3] K. Erbatur, Ö. Koca, E. Taşkıran et al. “ZMP based reference generation for biped walking robots”, World Academy of Science and Technology, no. 58, 2009, pp. 943–950
  • [4] D.P. Ferris, M. Louie, C.T. Farley, “Running in the real world: adjusting leg stiffness for different surfaces”, Proceeding of The Royal Society, 1998, pp. 989–994.
  • [5] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behavior explains basic dynamics of walking and running”, Proceeding of The Royal Society, 2006.
  • [6] K. Hashimoto, Y. Takezaki, K. Hattori et al., “A study of function of foot’s medial longitudinal arch using biped humanoid robot”. In: 2010 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2010, pp. 2206–2211.
  • [7] B. Koopman, H. Grootenboer, H. de Young, “An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking”, Journal of Biomechanics, vol. 28, no. 11, pp. 1369–1376.
  • [8] J.T. McConville, T.D. Churchill, I. Kaleps et al., “Anthropometric relationships of body and body segment moments of inertia”. In: Report No. AFAMRL-TR-80-119, Wright-Patterson Air Force Base, OH, 1980.
  • [9] L.A. Miller, D.S. Childress, “Analysis of a vertical compliance prosthetic foot”, Rehabilitation Research and Development, no. 34, 1997, pp. 54–57.
  • [10] N. Milne, The ankle and foot in locomotion. 2010. Course material at UWA. Website: http://www.lab. anhb.uwa.edu.au/hfa213/week5/lec5afoot.pdf
  • [11] K. Nishiwaki, Y. Murakami, S. Kagami et al., “A Six-axis Force Sensor with Parallel Support Mechanism to Measure the Ground Reaction Force of Humanoid Robot”. In: Proceedings of IEEE International Conference on Robotics and Automation. ICRA 2002, vol. 3, pp. 2277–2282.
  • [12] K. Nishiwaki, S. Kagami, Y. Kuniyoshi et al., “Toe joints that enhance bipedal and fullbody motion of humanoid robots”, Proceedings of IEEE International Conference on Robotics and Automation. ICRA 2002, vol. 3, pp. 3105-3110.
  • [13] L. Ren, R.K. Jones, D. Howard, “Whole body inverse dynamics over a complete gait cycle based only on measured kinematics”, Journal of Biomechanics, 41, 2008, pp. 2750-2759.
  • [14] P. Sardain, G. Bessonnet, “Forces acting on a biped robot. Center of Pressure Zero Moment Point”, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 34, no. 5, Sep. 2004, pp. 630–637.
  • [15] H.M. Schepers, E. van Asseldonk, J.H. Buurke, P.H. Veltink, “Ambulatory Estimation of Center of Mass Displacement During Walking”, IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, Apr. 2009, pp. 1189–1195.
  • [16] V. Ruiz Gárate, “Inverse Dynamic problem of human gait – Investigation for robotic application”, Master diploma thesis, Warsaw University of Technology, 2010.
  • [17] M. Vukobratović, “Dynamic models, control synthesis and stability of biped robots gait”, CISM Courses and Lectures, no. 375, 1997, pp. 153–190.
  • [18] M. Vukobratović, B, Borovac “Zero Moment Point – thirty five years of its life”, International Journal of Humanoid Robotics, no. 1, 2004, pp. 157–173.
  • [19] T. Zielińska, Postural equilibrium in two-legged locomotion, Working material. Warsaw, Poland, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0012-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.