PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Skewes Number for Twin Primes: Counting Sign Changes of pi 2(x) - C2Li2(x)

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of computer investigation of the sign changes of the difference between the number of twin primes pi2 (x) and the Hardy-Littlewood conjecture C2Li2 (x) are reported. It turns out that d2 (x) = pi2 (x) - C2Li2 (x) changes the sign at unexpectedly low values of x and for x less than 248 = 2.81... x 1014 there are 477118 sign changes of this difference. It is conjectured that the number of sign changes of d2 (x) for x element of (1, T ) is given by T log(T). The running logarithmic densities of the sets for which d2 (x) greather than 0 and d2 (x) less than 0 are plotted for x up to 2 48.
Słowa kluczowe
EN
Twórcy
autor
  • Group of Mathematical Methods in Physics University of Wrocław Pl. Maxa Borna 9, PL-50-204 Wrocław, Poland, mwolf@ift.uni.wroc.pl
Bibliografia
  • [1] R.F. Arenstorf, There are infinitely many prime twins, 26-th May 2004. http: //arxiv.org/abs/math/0405509v1.
  • [2] C. Bays, R.H. Hudson, A new bound for the smallest x with ( ) pi ) Li x x − . Mathematics of Computation 69: 1285-1296, (2000). available from http://www.ams. org/mcom/2000-69-231/S0025-5718-99-01104-7/S0025-5718-99-01104-7.pdf.
  • [3] B.C. Berndt, Ramanujan's Notebooks, Part IV. Springer Verlag (1994).
  • [4] R.P. Brent, Irregularities in the distribution of primes and twin primes. Mathematics of Computation 29: 43-56 (1975). available from http://wwwmaths.anu.edu.au/ ~brent/pd/rpb024.pdf.
  • [5] A.M. Cohen, M.J.E. Mayhew, On the difference ( ) pi( ) Li x x − Proc. London Math. Soc. 18: 691-713 (1968).
  • [6] D.W. DeTemple, A quicker convergence to Euler's constant. The American Mathematical Monthly 100 (5): 468-470 (1993).
  • [7] W. Ellison, F. Ellison, Prime Numbers. John Wiley and Son (1985).
  • [8] A. Granville, G. Martin, Prime number races. American Mathematical Monthly 113: 1-33 (2006).
  • [9] G.H. Hardy, J.E. Littlewood, Some problems of ‘Partitio Numerorum’ III: On the expression of a number as a sum of primes. Acta Mathematica 44: 1-70 (1922).
  • [10] J. Havil, Gamma: Exploring Euler's Constant. Princeton University Press, Princeton, NJ (2003).
  • [11] A.E. Ingham, A note on the distribution of primes. Acta Arithmetica I: 201-211, 1936. available from http://matwbn.icm.edu.pl/ksiazki/aa/aa1/aa1116.pdf.
  • [12] A.E. Ingham, The distribution of prime numbers. unchanged reprint: Hafner Publ. Comp. (New York) (1971).
  • [13] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. I. Acta Arithetica 44: 365-377 (1984). available from http://matwbn.icm.edu.pl/ ksiazki/aa/aa44/aa4446.pdf.
  • [14] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. II. Acta Arithetica 45: 65-74 (1984). available from http://matwbn.icm.edu.pl/ ksiazki/aa/aa45/aa4517.pdf. 92 M. Wolf
  • [15] J. Kaczorowski, K. Wiertelak, Oscillations of a given size of some arithmetic error terms. Trans. Amer. Math. Soc. 361: 5023-5039 (2009).
  • [16] S. Knapowski, On sign changes of the difference pi )xLi( ) − x . Acta Arithmetica VII: 106-119 (1962).
  • [17] J. Koreevar, Distributional Wiener-Ikehara theorem and twin primes. Indag. Mathem., N.S. 16: 3749, 2005. Available from http://staff.science.uva.nl/~korevaar/DisWieIke.pdf.
  • [18] J. Korevaar, H. te Riele. Average prime-pair counting formula. Math. Comput. 79 (270): 1209-1229 (2010).
  • [19] R.S. Lehman, On the difference π(x) – Li(x). Acta Arithmetica XI: 397-410 (1966). http://matwbn.icm.edu.pl/ksiazki/aa/aa11/aa11132.pdf.
  • [20] J.E. Littlewood, Sur la distribution des nombres premieres. Comptes Rendus 158: 1869-1872 (1914).
  • [21] J. Pintz, On the remainder term of the prime number formula. III. Studia Sci. Math. Hungar. 12: 343-369 (1977).
  • [22] J. Pintz, On the remainder term of the prime number formula. IV. Studia Sci. Math. Hungar. 13: 29-42 (1978).
  • [23] H.W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York, NY (1986).
  • [24] P. Ribenboim, The Little Book of Big Primes. 2ed., Springer (2004).
  • [25] M. Rubinstein, A simple heuristic proof of Hardy and Littlewood conjecture B. Amer. Math. Monthly, 100: 456-460 (1993).
  • [26] M. Rubinstein, P. Sarnak, Chebyshevs bias. Experimental Mathematics 3: 173-197 (1994).
  • [27] Y. Saouter, P. Demichel, A sharp region where ( ) pi( ) li x x − .is positive. Math. Comput. 79 (272): 2395-2405 (2010).
  • [28] J.C. Schlage-Puchta, Sign changes of pi( , ,1) ( , , ). x q −pi xqa Acta Mathematica Hungarica, 102: 305-320 (2004).
  • [29] S. Skewes, On the difference ( ) pi( ) Li x x − . J. London Math. Soc. 8: 277-283, 1934. available from http://www.ift.uni.wroc.pl/~mwolf/Skewes1933.pdf.
  • [30] S. Skewes. On the difference ( ) ( ) Li x x − . II. Proc. London Math. Soc. 5: 48-70, 1955. available from http://www.ift.uni.wroc.pl/~mwolf/Skewes1955.pdf. 12
  • [31] H.J. te Riele, On the difference ( ) pi( ) Li x x − . Mathematics of Computation 48: 323-328 (1987).
  • [32] G. Tenenbaum, Re: Arenstorf's paper on the twin prime conjecture. NM- BRTHRY@listserv.nodak.edu mailing list. 8 Jun 2004. http://listserv.nodak. edu/cgi-bin/wa.exe? A2=ind0406&L=nmbrthry&F=&S=&P=1119.
  • [33] P. Turan, On the twin-prime problem II. Acta Arithmetica XIII: 61-89, 1967. available from http://matwbn.icm.edu.pl/ksiazki/aa/aa13/aa1315.pdf. 13
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0011-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.