Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of computer investigation of the sign changes of the difference between the number of twin primes pi2 (x) and the Hardy-Littlewood conjecture C2Li2 (x) are reported. It turns out that d2 (x) = pi2 (x) - C2Li2 (x) changes the sign at unexpectedly low values of x and for x less than 248 = 2.81... x 1014 there are 477118 sign changes of this difference. It is conjectured that the number of sign changes of d2 (x) for x element of (1, T ) is given by T log(T). The running logarithmic densities of the sets for which d2 (x) greather than 0 and d2 (x) less than 0 are plotted for x up to 2 48.
Słowa kluczowe
Rocznik
Tom
Strony
87--92
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Group of Mathematical Methods in Physics University of Wrocław Pl. Maxa Borna 9, PL-50-204 Wrocław, Poland, mwolf@ift.uni.wroc.pl
Bibliografia
- [1] R.F. Arenstorf, There are infinitely many prime twins, 26-th May 2004. http: //arxiv.org/abs/math/0405509v1.
- [2] C. Bays, R.H. Hudson, A new bound for the smallest x with ( ) pi ) Li x x − . Mathematics of Computation 69: 1285-1296, (2000). available from http://www.ams. org/mcom/2000-69-231/S0025-5718-99-01104-7/S0025-5718-99-01104-7.pdf.
- [3] B.C. Berndt, Ramanujan's Notebooks, Part IV. Springer Verlag (1994).
- [4] R.P. Brent, Irregularities in the distribution of primes and twin primes. Mathematics of Computation 29: 43-56 (1975). available from http://wwwmaths.anu.edu.au/ ~brent/pd/rpb024.pdf.
- [5] A.M. Cohen, M.J.E. Mayhew, On the difference ( ) pi( ) Li x x − Proc. London Math. Soc. 18: 691-713 (1968).
- [6] D.W. DeTemple, A quicker convergence to Euler's constant. The American Mathematical Monthly 100 (5): 468-470 (1993).
- [7] W. Ellison, F. Ellison, Prime Numbers. John Wiley and Son (1985).
- [8] A. Granville, G. Martin, Prime number races. American Mathematical Monthly 113: 1-33 (2006).
- [9] G.H. Hardy, J.E. Littlewood, Some problems of ‘Partitio Numerorum’ III: On the expression of a number as a sum of primes. Acta Mathematica 44: 1-70 (1922).
- [10] J. Havil, Gamma: Exploring Euler's Constant. Princeton University Press, Princeton, NJ (2003).
- [11] A.E. Ingham, A note on the distribution of primes. Acta Arithmetica I: 201-211, 1936. available from http://matwbn.icm.edu.pl/ksiazki/aa/aa1/aa1116.pdf.
- [12] A.E. Ingham, The distribution of prime numbers. unchanged reprint: Hafner Publ. Comp. (New York) (1971).
- [13] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. I. Acta Arithetica 44: 365-377 (1984). available from http://matwbn.icm.edu.pl/ ksiazki/aa/aa44/aa4446.pdf.
- [14] J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. II. Acta Arithetica 45: 65-74 (1984). available from http://matwbn.icm.edu.pl/ ksiazki/aa/aa45/aa4517.pdf. 92 M. Wolf
- [15] J. Kaczorowski, K. Wiertelak, Oscillations of a given size of some arithmetic error terms. Trans. Amer. Math. Soc. 361: 5023-5039 (2009).
- [16] S. Knapowski, On sign changes of the difference pi )xLi( ) − x . Acta Arithmetica VII: 106-119 (1962).
- [17] J. Koreevar, Distributional Wiener-Ikehara theorem and twin primes. Indag. Mathem., N.S. 16: 3749, 2005. Available from http://staff.science.uva.nl/~korevaar/DisWieIke.pdf.
- [18] J. Korevaar, H. te Riele. Average prime-pair counting formula. Math. Comput. 79 (270): 1209-1229 (2010).
- [19] R.S. Lehman, On the difference π(x) – Li(x). Acta Arithmetica XI: 397-410 (1966). http://matwbn.icm.edu.pl/ksiazki/aa/aa11/aa11132.pdf.
- [20] J.E. Littlewood, Sur la distribution des nombres premieres. Comptes Rendus 158: 1869-1872 (1914).
- [21] J. Pintz, On the remainder term of the prime number formula. III. Studia Sci. Math. Hungar. 12: 343-369 (1977).
- [22] J. Pintz, On the remainder term of the prime number formula. IV. Studia Sci. Math. Hungar. 13: 29-42 (1978).
- [23] H.W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York, NY (1986).
- [24] P. Ribenboim, The Little Book of Big Primes. 2ed., Springer (2004).
- [25] M. Rubinstein, A simple heuristic proof of Hardy and Littlewood conjecture B. Amer. Math. Monthly, 100: 456-460 (1993).
- [26] M. Rubinstein, P. Sarnak, Chebyshevs bias. Experimental Mathematics 3: 173-197 (1994).
- [27] Y. Saouter, P. Demichel, A sharp region where ( ) pi( ) li x x − .is positive. Math. Comput. 79 (272): 2395-2405 (2010).
- [28] J.C. Schlage-Puchta, Sign changes of pi( , ,1) ( , , ). x q −pi xqa Acta Mathematica Hungarica, 102: 305-320 (2004).
- [29] S. Skewes, On the difference ( ) pi( ) Li x x − . J. London Math. Soc. 8: 277-283, 1934. available from http://www.ift.uni.wroc.pl/~mwolf/Skewes1933.pdf.
- [30] S. Skewes. On the difference ( ) ( ) Li x x − . II. Proc. London Math. Soc. 5: 48-70, 1955. available from http://www.ift.uni.wroc.pl/~mwolf/Skewes1955.pdf. 12
- [31] H.J. te Riele, On the difference ( ) pi( ) Li x x − . Mathematics of Computation 48: 323-328 (1987).
- [32] G. Tenenbaum, Re: Arenstorf's paper on the twin prime conjecture. NM- BRTHRY@listserv.nodak.edu mailing list. 8 Jun 2004. http://listserv.nodak. edu/cgi-bin/wa.exe? A2=ind0406&L=nmbrthry&F=&S=&P=1119.
- [33] P. Turan, On the twin-prime problem II. Acta Arithmetica XIII: 61-89, 1967. available from http://matwbn.icm.edu.pl/ksiazki/aa/aa13/aa1315.pdf. 13
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0011-0009