Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Computational modelling with multi-agent systems has become an important technique in studying language evolution. We present a brief introduction into this rapidly developing field, as well as our own contributions, which include an analysis of the evolutionary naming game model. In this model, communicating agents, which try to establish a common vocabulary, are equipped with an evolutionarily selected learning ability. Such a coupling of biological and linguistic ingredients results in an abrupt transition: upon a small change of the model control parameter, a poorly communicating group of agents with small learning abilities transforms into almost perfectly communicating group of agents with large learning abilities. Genetic imprinting of the learning abilities progresses through the Baldwin effect: initially linguistically unskilled agents learn a language, which creates a niche where there is an evolutionary pressure for the increase of learning ability. Under the assumption that communication intensity increases continuously with finite speed, the transition is split into several transition-like changes. It shows that the speed of cultural changes, that sets an additional characteristic time scale, might be yet another factor affecting the evolution of language. In our opinion, this model shows that linguistic and biological processes have a strong influence on each other and this influence certainly has contributed to an explosive development of our species.
Słowa kluczowe
Rocznik
Tom
Strony
41--51
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Institute of Linguistics, Adam Mickiewicz University 60-371 Poznań, Poland, lipowska@amu.edu.pl
Bibliografia
- [1] N. Chomsky, Aspects of the Theory of Syntax. MIT Press, Cambridge 1965.
- [2] G. Sampson, Educating Eve: The ’Language Instinct’ Debate. Cassell, London 1997.
- [3] N. Chomsky, Language and Mind, Harcourt Brace Jovanovich. San Diego 1972.
- [4] S. Pinker, P. Bloom, Natural language and natural selection. Behavioral and Brain Sciences 13 (4), 707-784 (1990).
- [5] R.S. Jackendoff, Languages of the Mind. MIT Press, Cambridge 1992.
- [6] C. Knight et al. (eds.), The Evolutionary Emergence of Language: Social Function and the Origin of Linguistic Form. Cambridge University Press, Cambridge 2000.
- [7] M.A. Nowak, N.L. Komarova, Towards an evolutionary theory of language. Trends in Cognitive Sciences 5 (7), 288-295 (2001). M.A. Nowak, D.C. Krakauer, The evolution of language. Proc. Natl. Acad. Sci. USA 96 (14), 8028-8033 (1999).
- [8] K. Smith, The Transmission of Language: models of biological and cultural evolution. Ph.D. thesis, The University of Edinburgh, Edinburgh 2003.
- [9] S.J. Gould, The limits of adaptation: Is language a spandrel of the human brain? Paper presented to the Cognitive Science Seminar, Center for Cognitive Science, MIT 1987. 50 D. Lipowska
- [10] S.J. Gould, R.C. Lewontin, The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205 (1161), 581-598 (1979).
- [11] J. Maynard Smith, E. Szathmáry, Major Transitions in Evolution. Freeman, Oxford 1995.
- [12] S. Számadó, E. Szathmáry, Selective scenarios for the emergence of natural language. Trends in Ecology & Evolution 21(10), 555-561 (2006).
- [13] W.D. Hamilton, The genetical evolution of social behaviour I and II. Journal of Theoretical Biology 7, 1-16, 17-52 (1964).
- [14] R.L. Trivers, The evolution of reciprocal altruism. Quarterly Review of Biology 46, 35-57 (1971).
- [15] J.-L. Dessalles, Altruism, status, and the origin of relevance. In: J.R. Hurford et al. (eds.), Approaches to the Evolution of Language: Social and Cognitive Bases.Cambridge University Press, Cambridge, 130-147 (1998).
- [16] J. Noble, Cooperation, competition and the evolution of prelinguistic communication. In: Knight et al. (eds.) Evolutionary Emergence of Language. Cambridge University Press, Cambridge, 40-61 (2000).
- [17] J.M. Baldwin, A new factor in evolution. American Naturalist 30, 441-451, 536-553 (1896).
- [18] G.G. Simpson, The Baldwin effect. Evolution 7, 110-117 (1953).
- [19] B.H. Weber, D.J. Depew (eds.), Evolution and Learning – The Baldwin Effect Reconsidered. MIT Press, Cambridge 2003.
- [20] P.D. Turney, Myths and legends of the Baldwin effect. In: T. Fogarty, G. Venturini (eds.) Proceedings of the ICML-96 (13th International Conference on Machine Learning, Bari, Italy), 135-142 (1996).
- [21] H. Yamauchi, Baldwinian Accounts of Language Evolution.Ph.D. thesis, The University of Edinburgh, Edinburgh 2004.
- [22] M.H. Christiansen, N. Chater, Language as shaped by the brain. Behavioral and Brain Sciences 31, 489-558 (2008).
- [23] M.A. Nowak, N.L. Komarova, P. Niyogi, Computational and evolutionary aspects of language. Nature 417, 611-617 (2002).
- [24] B. de Boer, Computer modelling as a tool for understanding language evolution. In: Gonthier et al. (eds.) Evolutionary Epistemology, Language and Culture – A non-adaptationist, systems theoretical approach. Springer, Dordrecht, 381-406 (2006).
- [25] S. Kirby, Natural language from Artificial Life. Artificial Life 8 (2), 185-215 (2002).
- [26] L. Steels, Iterated Learning versus Language Games. Two models for cultural language evolution. In: C. Hemelrijk, E. Bonabeau (eds.) Proceedings of the International Workshop of the Self-Organization and Evolution of Social Behaviour. University of Zurich, Switzerland, Zurich 2002.
- [27] S. Kirby, J. Hurford, The emergence of linguistic structure; An overview of the Iterated Learning Model. In: A. Canelosi, D. Parisi (eds.) Simulating the Evolution of Language. Springer-Verlag, Berlin p. 121-148, 2001.
- [28] H. Brighton, Compositional syntax from cultural transmission. Artificial Life 8 (1), 25-54 (2002).
- [29] L. Steels, A self-organizing spatial vocabulary. Artificial Life 2 (3), 319-332 (1995).
- [30] A. Lipowski, D. Lipowska, Bio-linguistic transition and the Baldwin effect in the evolutionary naming game model. International Journal of Modern Physics C, 19 (3), 399-407 (2008).
- [31] A. Baronchelli, M. Felici, V. Loreto, E. Caglioti, L. Steels, Sharp transition towards shared vocabularies in multiagent systems. Journal of Statistical Mechanics 06, P06014 (2006).
- [32] L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Nonequilibrium dynamics of language games on complex networks. Physical Review E 74, 036105 (2006).
- [33] D. Nettle, Using social impact theory to simulate language change. Lingua 108, 95-117 (1999). D. Nettle, Is the rate of linguistic change constant? Lingua 108, 119-136 (1999).
- [34] G. Hinton, S. Nowlan, How learning can guide evolution. Complex Systems 1, 495-502 (1987).
- [35] S. Munroe, A. Cangelosi, Learning and the evolution of language: The role of cultural variation and learning costs in the Baldwin effect. Artificial Life 8 (4), 311-339 (2002).
- [36] C. Holden, The origin of speech. Science 303, 1316-1319 (2004).
- [37] D. Abrams, S.H. Strogatz, Modelling the dynamics of language death. Nature 424, 900 (2003).
- [38] C. Schulze, D. Stauffer, S. Wichmann, Birth, survival and death of languages by Monte Carlo simulation. Communications in Computational Physics 3 (2), 271-294 (2008).
- [39] P.M.C. de Oliveira, D. Stauffer, S. Wichmann, S.M. de Oliveira, A computer simulation of language families. Journal of Linguistics 44 (3), 659-675 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0011-0005