PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Optimal Temperature Control for the Reactions with Parallel Deactivation of Enzyme Encapsulated inside Microorganism Cells

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A batch biotransformation process running in the presence of microorganisms cells revealing a specified enzyme activity has been considered. A non-linear deactivation model suggested by Do and Weiland has been taken into account for modeling of the process. Based on variational calculus computations aimed at finding an optimal selection of temperature conditions that ensure obtaining maximum conversion or minimum duration time necessary for its attaining have been carried out. The solutions were given and discussed for the stationary process, and for the active upper and lower temperature limitations. It has been proved that an application of microorganisms cells results in slowing down the reaction rate and shifting the initial temperature of the stationary profile to higher values. They are more pronounced the lower the permeability of the cell membrane is. In consequence, an extension of the process duration time is observed along the sections of the optimal profile while the lower temperature constraint usually becomes inactive.
Twórcy
autor
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland, igrubeck@utp.edu.pl
Bibliografia
  • [1] N. Aziz, I.M. Mujtaba, Optimal operation policies in batch reactors. Chemical Engineering Journal 85, 313-325 (2002).
  • [2] N.M. Faqir, Optimization of operating temperature for an continuous immobilized glucose isomerase reactor with pseudo linear kinetics. Engineering in Life Sciences 4, 450-459 (2004).
  • [3] A. Arpornwichanop, P. Kittisupakorn, I.M. Mujtaba, Online dynamic optimization and control strategy for improving the performance of batch reactors. Chemical Engineering and Processing 44, 101-114 (2005).
  • [4] A. Sadana, Generalized optimum temperature operations criterion for a deactivating immobilized enzyme batch reactor. AIChE Journal 25, 535-538 (1979).
  • [5] Z. Szwast, S. Sieniutycz, Optimal temperature profiles for parallel-consecutive reactions with deactivating catalyst. Catalysis Today 66, 461-466 (2001).
  • [6] E. Cepeda, M. Hermosa, A. Ballesteros, Optimization of maltodextrin hydrolysis by glucoamylase in a batch reactor. Biotechnology and Bioengineering 76, 70-76 (2001).
  • [7] Z. Szwast, S. Sieniutycz, Optimal dynamical processes in tubular reactor with deactivation of multi-run moving catalyst, Chemical Engineering Journal 103, 45-50 (2004).
  • [8] N.M. Faqir, I.M. Abu-Reesh, Optimum temperature operation mode for glucose isomerase reactor operating at constant glucose conversion. Bioprocess Engineering 19, 11-17 (1998).
  • [9] N.M. Faqir, M.M. Attarakin, Optimal temperature policy for immobilized enzyme packed bed reactor performing reversible Michaelis-Menten kinetics using the disjoint policy. Biotechnology and Bioengineering 77, 163-173 (2002).
  • [10] J.L. Gómez, A. Bódalo, E. Gómez, J. Bastida, M.F. Maximo, Two-parameter model for effectiveness factor for immobilized enzymes with reversible Michaelis-Menten kinetics. Chemical Engineering Science 58, 4287-4290 (2003).
  • [11] R. Khalilpour, R. Roostaazad, Development and verification of a model to describe an immobilized glucose isomerase packed bed bioreactor, Biochemical Engineering Journal 40, 328-336 (2008).
  • [12] A.E. Al-Muftah, I. M. Abu-Reesh, Effects of internal mass transfer and product inhibition on a simulated immobilized enzyme-catalyzed reactor for lactose hydrolysis. Biochemical Engineering Journal 23, 139-153 (2005).
  • [13] E.J. Mammarella, A.C. Rubiolo, Effect of biocatalyst swelling on the operation of packed-bed immobilized enzyme bioreactor. Process Biochemistry 44, 183-190 (2009).
  • [14] S. Mudliar, S. Banerjee, A. Vaidya, S. Devotta, Steady state model for evaluating of external and internal mass transfer effects in an immobilized biofilm. Bioresource Technology 99, 3468-3474 (2008).
  • [15] A.E. Al-Muftah, I. M. Abu-Reesh, Effects of simultaneous internal and external mass transfer and product inhibition on immobilized enzyme-catalyzed reactor. Biochemical Engineering Journal 27, 167-178 (2005).
  • [16] D.D. Do, R.H. Weiland, Consistency between rate expressions for enzyme reactions and deactivation. Biotechnology and Bioengineering 22, 1087-1093 (1980).
  • [18] K. Nazari, A. Mahmoudi, M. Shahrooz, R. Khodafarin, A.A. Moosavi-Movahedi, Suicide-peroxide inactivation of horseradish peroxidase in the presence of Sodium nDodecyl Sulophate: A study of the enzyme deactivation kinetics. Journal of Enzyme Inhibition and Medicinal Chemistry 20, 285-292 (2005).
  • [18] S. Chazarra, J. Cabanes, J. Escribano, F. Garcia-Carmona, Kinetic study of the suicide inactivation of latent polyphenoloxidase from iceberg lettuce (Lactuca sativa) induced by 4-tert-butylcatechol in the presence of SDS. Biochimica et Biophysica Acta 1339, 297-303 (1997).
  • [19] S. Szepe, O. Levenspiel, Optimal temperature policies for reactors subject to catalyst deactivation − I batch reactor. Chemical Engineering Science 23, 881-894 (1968).
  • [20] E. Pinch, Optimal Control and the Calculus of Variations. Oxford: Oxford University Press 1998.
  • [21] M. Wójcik, Kinetics of catalase deactivation of yeast Saccharomyces cerevisiae by hydrogen peroxide. Bydgoszcz: Publishing of University of Technology and Agriculture 1988 (in Polish).
  • [22] S.H. Lin, Optimal Feed Temperature for an immobilized Enzyme Packed-Bed Reactor. J. Chem. Tech. Biotechnol. 50, 17-26 (1991).
  • [23] I. Grubecki, An Analysis of the temperature policy for enzymatic reaction with Michaelis-Menten kinetics in a batch reactor. Ph.D. Thesis, Faculty of Chemical and Process Engineering, University of Technology, Warsaw 1997 (in Polish).
  • [24] M. Al-Shanag, Z. Al-Qodah, J. Herrero, J.A.C. Humphrey, F. Giralt, Using a wall-driven flow to reduce the external mass-transfer resistance of a bioreaction system. Biochemical Engineering Journal 39, 554-565 (2008).
  • [25] M. Szukiewicz, R. Petrus, Approximate model for diffusion and reaction in a porous pellet and an effectiveness factor, Chemical Engineering Science 59, 479-483 (2004).
  • [26] M.L. Shuler, F. Kargi, Bioprocess Engineering: Basic Concepts. Prentice Hall, New Jersey 2002.
  • [27] K. van’t Riet, J. Tramper, Basic Bioreactor Design. Marcel Dekker, Inc., New York, Basel, Hong Kong 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0011-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.