PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The pi-Electron Delocalization Imposed by Thermal Vibrations of Substituted Benzene Analogues in Mediums of Varying Polarities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The unique set of aromaticity indices was identified for thermally induced changes of pi-electron delocalization by means of PCA (Principal Component Analysis). It was demonstrated that solvents polarity can influence not only the values of aromaticity indices but also their contribution to Principal Components. Therefore, in different phases one should select different indices for a proper description of the aromaticity. The found aromaticity diversities indices were provided for aniline as well as p-nitrosoaniline and it was found that the geometry of the latter one is highly sensitive to solvents polarity changes. Thus, all of the aromaticity indices experienced a reduction of their values, with the HOMA (Harmonic Oscillator Model of Aromaticity) index being the most sensitive. It was also found that there were such vibrations which could alter this trend and lead to apparent increase of aromaticity.
Twórcy
autor
autor
  • Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University ul. Kurpińskiego 5, 85-950 Bydgoszcz, Poland, piotr.cysewski@cm.umk.pl
Bibliografia
  • [1] E.D. Bergmann, B. Pullman Eds. 1970 Aromaticity, Pseudoaromaticity, Antiaromaticity. Proceedings of an International Symposium, Israel Academy of Sciences and Humanities: Jerusalem, 1971.
  • [2] P.J. Garrat, Aromaticity. Willey, New York, 1986.
  • [3] V.I. Mionkin, M.N. Glukhovtsev, B.Y. Simkin, Aromaticity and Antiromaticity – Electronic and Structural Aspects. Willey, New York, 1994.
  • [4] P.v.R. Schleyer, Aromaticity. Chem. Rev. 101, 1115-1566 (2001).
  • [5] T.M. Krygowski, M.K. Cyrański, Structural Aspects of Aromaticity. Chem. Rev. 101, 1385-1419 (2001). S) as
  • [7] Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 105, 3842-3888 (2005).
  • [8] A.R. Katritzky, K. Jug, D.C. Oniciu, Quantitative Measures of Aromaticity for Mono-, Bi-, and Tricyclic Penta- and Hexaatomic Heteroaromatic Ring Systems and Their Interrelationships, Chem. Rev. 101, 1421-1449 (2001).
  • [9] M.K. Cyrański, Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773-3811 (2005). 12 P. Cysewski, T. Jeliński
  • [10] T. Heine, C. Corminboeuf, G. Seifert, The magnetic shielding function of molecules and pi electron delocalization. Chem. Rev. 105, 3889-3910 (2005).
  • [11] A.R. Katritzky, P. Barczynski, G. Musumarra, D. Pisano, M. Szafran, Aromaticity as a quantitative concept. 1.A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles. J. Am. Chem. Soc. 111, 7-15 (1989).
  • [12] T.M. Krygowski, M.K. Cyrański, Z. Czarnocki, G. Haefelinger, A.R. Katritzky, Aromaticity: a Theoretical Concept of Immense Practical Importance, Tetrahedron 56, 1783-1796 (2000).
  • [13] A.R. Katritzky, M. Karelson, S. Sild, T.M. Krygowski, K. Jug, Aromaticity as a Quantitative Concept. 7. Aromaticity Reaffirmed as a Multidimensional Characteristic.J. Org. Chem. 63, 5228-5231 (1998).
  • [14] M.K. Cyrański, T.M. Krygowski, A.R. Katritzky, P.v.R. Schleyer, To what extent can aromaticity be defined uniquely? J. Org. Chem. 67, 1333-1338 (2002).
  • [15] M. Alonso, B. Herradón, A Universal Scale of Aromaticity for π-Organic Compounds. J. Comput. Chem. 31(5) 917-928 (2010).
  • [16] M. Alonso, B. Herradon, Neural Networks as a Tool to Classify Compounds According to Aromaticity Criteria. Chem. Eur. J. 13, 3913-3923 (2007).
  • [17] F. Feixas, E. Matito, J. Poater, M. Sola, On the performance of some aromaticity indices: a critical assessment using a test set. J. Comput. Chem. 29, 1543-1554 (2008).
  • [18] A.T. Balaban, Is aromaticity outmoded? Pure Appl. Chem. 52, 1409-1429 (1980).
  • [19] J. Poater, I. Garcıa-Cruz, F. Illas, M. Solá, Discrepancy between common local aromaticity measures in a series of carbazole derivatives. Phys. Chem. Chem. Phys. 6, 314-318 (2004).
  • [20] J. Aihara, Circuit resonance energy: a key quantity that links energetic and magnetic criteria of aromaticity. J. Am. Chem. Soc. 128, 2873-2879 (2006).
  • [21] R. Islas, G. Martinez-Guajardo, J.O.C. Jime´nez-Halla, M. Solá, G. Merino, Not All That Has a Negative NICS Is Aromatic: The Case of the H-Bonded Cyclic Trimer of HF.J. Chem. Theory Comput. 6, 1131-1135 (2010).
  • [22] P. Cysewski,, J. Mol. Model., Quantification of thermal ring flexibilities of aromatic and heteroaromatic compounds. DOI 10.1007/s00894-010-0901-7 (2010).
  • [23] P. Cysewski, Influence of thermal vibrations on aromaticity of benzene. Phys. Chem. Chem. Phys. 13, 12998-13008 (2011).
  • [24] O.V. Shishkin, K.Y. Pichugin, L. Gorb, J. Leszczyński, Structural non-rigidity of six-membered aromatic rings.J. Mol. Struct .616, 159-166 (2002).
  • [25] O.V. Shishkin, Conformational flexibility of six-membered 1,4-dihydrocycles. J. Mol. Struct. 412, 115-120 (1997).
  • [26] O.V. Shishkin, Molecular structure and conformational flexibility of the 1,3-cyclohexadiene carbonyl derivatives.J. Mol. Struct. 403, 167-170 (1997).
  • [27] O.V. Shishkin, L. Gorb, J. Leszczyński, Does the Hydrated Cytosine Molecule Retain the Canonical Structure? A DFT Study. J. Phys. Chem. B 104, 5357-5361 (2000).
  • [28] O.S. Sukhanov, O.V. Shishkin, L. Gorb, J. Leszczyński, Structure and hydrogen bonding in polyhydrated complexes of guanine. J. Struct. Chem. 19, 171-180 (2008).
  • [29] G.A. Jeffrey, J.R. Ruble, R.K. McMullan, J.A. Pople, The Crystal Structure of Deuterated Benzene. Proc. R. Soc. 414, 47-57 (1987).
  • [30] G.J. Bodwell, D.O. Miller, R. Vermeij, Nonplanar Aromatic Compounds.6.[2]Paracyclo[2](2,7)pyrenophane. A Novel Strained Cyclophane and a First Step on the Road to a “Vögtle” Belt. Org. Lett. 3, 2093-2096 (2001).
  • [31] G.J. Bodwell, J.N. Bridson, M.K. Cyrański, J.W.J. Kennedy, T.M. Krygowski, M.R. Mannion, D.O. Mille, Nonplanar Aromatic Compounds. 8.1 Synthesis, Crystal Structures, and Aromaticity Investigations of the 1,n-Dioxa[n]-(2,7)pyrenophanes. How Does Bending Affect the Cyclic pi-Electron Delocalization of the Pyrene System? J. Org. Chem. 68, 2089-2098 (2003).
  • [32] G.J. Bodwell, J.N. Bridson, T.J. Houghton, J.W.J. Kennedy, M.R. Mannion, Angew. 1,8-Dioxa[8](2,7) pyrenophane, a Severely Distorted Polycyclic Aromatic Hydrocarbon.. Chem. Int. Ed. Engl. 35, 1320-1321 (1996).
  • [33] F.A.L. Anet, I. Yavari, Force-field calculations for some unsaturated cyclic hydrocarbons. Tetrahedron 34, 2879-2886 (1978).
  • [34] F. Feixas, E. Matito, J. Poater, M. Sola, Aromaticity of Distorted Benzene Rings: Exploring the Validity of Different Indicators of Aromaticity. J. Phys. Chem. A 111, 4513-4521 (2007).
  • [35] P. Cysewski, Molecular Perspective Review of Biochemical Role of Nucleobases Modified by Oxidative Stress. Computational Methods In Science And Technology 16(1), 51-72 (2010).
  • [36] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara,M. Challacombe, P.M.V. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A .Pople Gaussian 03, revision C.02. Gaussian, Inc, Wallingford CT 2004.
  • [37] D.M. Chipman, Reaction field treatment of charge penetration.J. Chem. Phys. 112, 5558-5565 (2000).
  • [38] A. Julg, P. François, Recherches sur la géométrie de quelques hydrocarbures non-alternants: son influence sur les énergies de transition, une nouvelle définition de l'aromaticité. Theor. Chim. Acta, 7, 249-259 (1967).
  • [39] A. Julg, in: E.D. Bergman, B. Pullman (Eds.), Aromaticity, pseudo-aromaticity, anti-aromaticity, Israel Academy of Science and Humanities, Jerusalem 1971.
  • [40] K. Jug, A bond order approach to ring current and aromaticity. J. Org. Chem. 48, 1344-1348 (1983).
  • [41] T.M. Krygowski, A. Ciesielski, C.W. Bird, A. Kotschy, Aromatic Character of the Benzene Ring Present in Various Topological Environments in Benzenoid Hydrocarbons. Nonequivalence of Indices of Aromaticity. J. Chem. Inf. Comput. Sci. 35, 203-210 (1995).
  • [42] T.M. Krygowski, A. Ciesielski, M. Cyrański, Aromatic Character and Energy of the Five- and Seven-membered Rings in The pi-Electron Delocalization Imposed by Thermal Vibrations of Derivatives of Penta- and Heptafulvene Substituted in Exocyclic Position, Chem. Pap. 49, 128-132 (1995).
  • [43] A.F. Pozharski, Heteroaromaticity, Chem. Heterocycl. Comp. 21, 717-749 (1985).
  • [44] S.I. Kotelevskii, O.V. Prezhdo, Aromaticity indices revisited: refinement and application to certain five-membered ring heterocycles. Tetrahedron 57, 5715-5729 (2001).
  • [45] C.W. Bird, A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron 41, 1409-1414 (1985).
  • [46] C.W. Bird, Heteroaromaticity.8. the influence of N-oxide formation on heterocyclic aromaticity. Tetrahedron 49, 8441-8448 (1993)
  • [47] J. Kruszewski, T.M. Krygowski, Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 36, 3839-3842 (1972).
  • [48] C.W. Bird, Heteroaromaticity. 10. The direct calculation of resonance energies of azines and azoles from molecular dimensions. Tetrahedron 53, 13111-13118 (1997).
  • [49] H.J. Dauben, J.D. Wilson, J.L. Laity, Diamagnetic susceptibility exaltation in hydrocarbons. J. Am. Chem. Soc. 91, 1991-1998 (1969).
  • [50] W.H. Flygare, Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters. Chem. Rev. 74, 653-687 (1974).
  • [51] P. Lazzaretti, Ring currents. Prog. Nucl. Magn. Reson. Spectrosc. 36, 1-88 (2000).
  • [52] J.A.N.F. Gomes, R.B. Mallion, Aromaticity and ring currents. Chem. Rev. 101, 1349-1384 (2001).
  • [53] T.A. Keith, R.F.W. Bader, Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 210, 223-231 1993).
  • [54] Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.R. Schleyer, Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 105, 3842-3888 (2005).
  • [55] P.v.R. Schleyer, H. Jiao, What is Aromaticity? Pure Appl. Chem. 68, 209-218 (1996).
  • [56] K. Ruud, T. Helgaker, K.L. Bak, P. Jørgensen, H.J.A. Jensen, Hartree–Fock limit magnetizabilities from London orbitals..J. Chem. Phys. 99, 3847-3859 (1993).
  • [57] F. De Proft, P. Geerlings, Conceptual and Computational DFT in the Study of Aromaticity. Chem. Rev. 101, 1451-1464 (2001).
  • [58] U.D. Priyakumar, G.N. Sastry, A theoretical study of the structures, energetics, stabilities, reactivities, and out-ofplane distortive tendencies of skeletally substituted benzenes (CH)5XH and (CH)4(XH)2 (X = B-, N+, Al-, Si, P+, Ga-, Ge, and As+). J. Org. Chem. 67, 271-281 (2002).
  • [59] J. Poater, M. Duran, M. Sola, B. Silvi, Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 105, 3911-3947 (2005).
  • [60] J. Poater, X. Fradera, M. Duran, M. Solà, An Insight into the Local Aromaticities of Polycyclic Aromatic Hydrocarbons and Fullerenes. Chem. Eur. J. 9, 1113-1122 (2003).
  • [61] X. Fradera, M.A. Austen, R.F.W. Bader, The Lewis Model and Beyond. J. Phys. Chem. A 103, 304-314 (1999).
  • [62] C.F. Matta, J. Hernandez-Trujillo, Bonding in Polycyclic Aromatic Hydrocarbons in Terms of the Electron Density and of Electron Delocalization. J. Phys. Chem. A 107, 7496-7504 (2003).
  • [63] E. Matito, M. Duran, M. Solá, The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization, J. Chem. Phys. 125, 059901 (2005).
  • [64] G. Merino, A. Vela, T. Heine, Description of Electron Delocalization via the Analysis of Molecular Fields. Chem.
  • Rev. 105, 3812-3841 (2005).
  • [65] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1994.
  • [66] R.F.W. Bader, A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893-928 (1991).
  • [67] S.T. Howard, T.M. Krygowski, Benzenoid hydrocarbon aromaticity in terms of charge density descriptors. Can. J. Chem. 75, 1174-1181 (1997).
  • [68] S. Noorizadeh, E. Shakerzadeh, Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys. Chem. Chem. Phys. 12, 4742-4749 (2010).
  • [69] AIMALL(Version 11.04.03), Todd A. Keith, 2011 (aim.tkgristmill.com)
  • [70] (Electronic Version): StatSoft, Inc. (2011). Electronic Statistics Textbook. Tulsa, OK: StatSoft. (Printed Version): Hill, T. & Lewicki, P. (2007). STATISTICS Methods and Applications. StatSoft, Tulsa, OK.
  • [71] P. Cysewski, B. Szefler, H. Szatyłowicz, T.M. Krygowski, An explicit solvent quantum chemichemistry study on the water environment influence on the interactions of fluoride with phenol. New J. Chem. 33, 831-837 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0011-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.