PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive control of frictional contact models for nonholonomic wheeled mobile robot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mobility of the robot depends on the vehicle dimensions, locomotion principles and wheel characteristics. The function of the wheel is to carry the load and to produce the traction force. The main factors of wheel terrain interaction are bearing capacity of ground, traction performance of the wheel and geometry of terrain profile. In this paper the system and control concepts of the wheeled robot is discussed in more detail, within the framework provided by the wheel terrain contact model. The dynamic model of the wheeled robot is presented by considering contact forces of the wheel due to their relative motion of the wheel and contact plane. Finally, a dynamic relation is introduced and results are presented in terms of forces, torques and displacements related to wheel terrain interaction. To estimate the forces in the system arising from the interaction between a deformable wheel and rigid terrain using the software package Ansys 10.0. Simulations were performed using Matlab- Simulink program and the results are shown that the proposed controller can overcome the influences the effect of contact forces in order to achieve the desired trajectory.
Twórcy
Bibliografia
  • [1] Tanner H.G., “ISS properties of nonholonomic vehicles”, Systems & Control Letters, no. 53, 2004, pp. 229 – 235.
  • [2] D’Andrea Novel B., Bastin G., Campion G., “Control of nonholonomic wheeled mobile robots by statefeedback linearization”, Int. Journal of Robotics Research, vol. 14, no. 6, 1995, pp. 543–559.
  • [3] Danwei Wang, Guangyan Xu, “Full-State Tracking and Internal Dynamics of Nonholonomic Wheeled Mobile Robots”, IEEE/ASME Transactions on Mechatronics, vol. 8, no. 2, 2003, pp. 203-214.
  • [4] Van Wyk D. J, Spoelstra J., de Klerk J. H., “Mathematical modelling of the interaction between a tracked vehicle and the terrain”, Appl. Math. Modelling, vol. 20, November 1996.
  • [5] Rill G., “Wheel Dynamics”. In: Proceedings of the XII International Symposium on Dynamic Problems of Mechanics DINAME 2007, ABCM, Ilhabela, SP, Brazil, 26th February – 2nd March 2007.
  • [6] Sun S., “Designing approach on trajectory-tracking control of mobile robot”, Robotics and Computer-Integrated Manufacturing, vol. 21, no. 1, 2005, pp. 81–85.
  • [7] Siegwart R., Lamon P., Estier T., Michel Lauria, Ralph Piguet, “Innovative design for wheeled locomotion in rough terrain”, Robotics and Autonomous Systems, vol. 40, 2002, pp. 151–162
  • [8] Chang Y.-Ch., Yamamoto Y., “Path planning of wheeled mobile robot with simultaneous free space locating capability”, Intel Serv Robotics, no. 2, 2009, pp. 9–22.
  • [9] Ray L.R., Brande D.C., Lever J.H., “Estimation of net traction for differential-steered wheeled robots”, Journal of Terramechanics, vol. 46, 2009, 75–87.
  • [10] Chakraborty N., Ghosal A., “Kinematics of wheeled mobile robots on uneven terrain”, Mechanism and Machine Theory, no. 39, 2004, pp. 1273–1287.
  • [11] Kozlowski K., Pazderski D., “Modelling and control of a 4-Wheel skid steering mobile robot”, International Journal of Applied Mathematics and Computer Science, vol. 14, no.4, 2004, pp. 477–496.
  • [12] Gonzalez A, Ottaviano E., Ceccarelli M., “On the kinematic functionality of a four-bar based mechanism for guiding wheels in climbing steps and obstacles”, Mechanism and Machine Theory, vol. 44, 2009, pp. 1507–1523.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0007-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.