PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Historic landmarks in radiation chemistry since early observations by Marie Skłodowska-Curie and Pierre Curie

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The origin of the radiation chemistry history is contemporary with the X-rays and uranic rays discoveries. The complexity of the phenomena induced by the radiation effects, which involve electrons, ions and free radicals and a specific spatial distribution of the energy deposit along the tracks, was progressively understood, particularly when pulse radiolysis and time-resolved detection permitted to observe the short-lived transient species and to explain the chemical or biochemical mechanims. This short review summarizes the most important landmarks of the concepts and their applications.
Czasopismo
Rocznik
Strony
203--211
Opis fizyczny
Bibliogr. 106 poz., rys.
Twórcy
autor
  • Laboratoire de Chimie Physique-ELYSE, Bat. 349, Université Paris-Sud, 91405 Orsay, France, Tel.: +33 1 6915 5550, Fax: +33 1 6915 6188, jacqueline.belloni@u-psud.fr
Bibliografia
  • 1. Allen AO (1948) Radiation chemistry of aqueous solutions. J Phys Colloid Chem 52:479–490
  • 2. Baxendale JH, Busi F (eds) (1982) The study of fast processes and transient species by electron pulse radiolysis. NATO ASI Series no 86. D. Reidel Publishing Co
  • 3. Baxendale JH, Fielden EM, Keene JP (1965) Pulse radiolysis of Ag+ solutions. In: Ebert M, Keene JP, Swallow A, Baxendale JH (eds) Pulse radiolysis. Academic Press, London, pp 207–220
  • 4. Baxendale JH, Wardman P (1971) Direct observation of solvation of the electron in liquid alcohols by pulse radiolysis. Nature 230:449–450
  • 5. Becquerel H (1896) Sur les radiations émises par phosphorescence. CR Acad Sci 122:420–422
  • 6. Becquerel H (1896) Sur les radiations invisibles émises par divers corps phosphorescents. CR Acad Sci 122:501–503
  • 7. Becquerel H (1896) Sur quelques propriétés nouvelles des radiations invisibles émises par divers corps phosphorescents. CR Acad Sci 122:559–561
  • 8. Becquerel H, Curie P (1901) Action physiologique des rayons du radium. CR Acad Sci 132:1289–1292
  • 9. Belloni J, Amblard J, Delcourt MO (1994) Radiation chemistry. Ann Rep C, Royal Soc Chem 91:351–393
  • 10. Belloni J, Crowell RA, Katsumura Y et al. (2010) Ultrafast pulse radiolysis methods. In: Wishart JF, Rao BSM (eds) Recent trends in radiation chemistry. World Scientific, Singapore, pp 121–160
  • 11. Belloni J, Fradin de la Renaudière J (1971) Radiolytic formation of long-lived ammoniated electrons at room temperature. Nature 232:173–174
  • 12. Belloni J, Mostafavi M (2001) Metal and semiconductor clusters. In: Jonah CD, Rao BSM (eds) Radiation chemistry. Present status and future trends. Elsevier, Amsterdam, pp 411–452
  • 13. Belloni J, Mostafavi M, Houée-Lévin C, Delcourt MO (2000) Radiation chemistry. Ann Rep C, Royal Soc Chem 96:225–295
  • 14. Belloni J, Tréguer M, Remita H, De Keyzer R (1999) Enhanced yield of photoinduced electrons in doped silver halide crystals. Nature 402:865–867
  • 15. Boag JW (1989) Pulse radiolysis. A historical account of the discovery of the optical absorption spectrum of the hydrated electron. In: Kroh J (ed) Early developments in radiation chemistry. Royal Society of Chemistry, Cambridge, pp 7–20
  • 16. Botter R, Lavery R, Leach S, Marx R (eds) (2000) Un siècle de Chimie Physique. J Chim Phys, Special issue, pp 11–21
  • 17. Bronskill MJ, Taylor WB, Wolff RK, Hunt JW (1970) Design and performance of a pulse radiolysis system capable of picosecond time resolution. Rev Sci Instrum 41:333–340
  • 18. Burton M, Magee JL (eds) (1969–1976) Advances in radiation chemistry. Vols 1–5. Wiley, New York
  • 19. Butler J, Hoey BM, Swallow JA (1989) Radiation chemistry. Ann Rep C, Royal Soc Chem 86:49–93
  • 20. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions. J Phys Chem Ref Data 17:513–886
  • 21. Buxton GV, Mulazzani QG, Ross AB (1995) Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solutions. J Phys Chem Ref Data 24:1055–1349
  • 22. Chapiro A (1989) Historical outline of the radiation chemistry of polymers. In: Kroh J (ed) Early developments in radiation chemistry. Royal Society of Chemistry, Cambridge, pp 21–28
  • 23. Chapiro A, Cousin C, Landler Y, Magat M (1949) Contribution à l’étude des polymérisations amorcées par des rayonnements nucléaires. Rec Trav Chim 68:1037–1068
  • 24. Closs GL, Calcaterra LT, Green NJ, Penfield KW, Miller JR (1986) Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions. J Phys Chem 90:3673–3683
  • 25. Coqueret X (2008) Obtaining high performance polymeric materials by irradiation. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry from basics to applications in material and life sciences. EDP Sciences, Les Ulis Cedex A, pp 131–149
  • 26. Curie M (1908) Sur la formation de brouillards en présence de l’émanation du radium. CR Acad Sci 147:379–382210 J. Belloni
  • 27. Curie M (1935) La Radioactivité. Vols 1–2. Hermann & Cie, Paris. [Note that for this textbook manuscript, printed just after Marie Curie’s death, and partly based on the lectures delivered until 1906 at University of Paris by Pierre Curie to whom Marie succeeded, she chose to sign Madame Pierre Curie, as a last tribute to their unique collaboration]
  • 28. Curie P (1903) Recherches récentes sur la radioactivité. J Chim Phys 1:409–449
  • 29. Curie P, Curie MS (1898) Sur une substance nouvelle radioactive, contenue dans la pechblende. CR Acad Sci 127:175–178
  • 30. Curie P, Curie M (1899) Effets chimiques produits par les rayons de Becquerel. CR Acad Sci 129:823–825
  • 31. Curie P, Curie M, Bémont G (1898) Sur une nouvelle substance fortement radioactive, contenue dans la pechblende. CR Acad Sci 127:1215–1218
  • 32. Curie P, Debierne A (1901) Sur la radioactivité induite et les gaz activés par le radium. CR Acad Sci 132:770–772
  • 33. Czapski G, Schwarz HA (1962) The nature of the reducing radical in water radiolyss. J Phys Chem 66:471–474
  • 34. Dainton FS (1947)Effect of gamma- and X-rays on dilute aqueous solutions of acrylonitrile. Nature 160:268
  • 35. Dainton FS (1947) On the existence of free atoms and radicals in water and aqueous solutions subjected to ionizing radiation. J Phys Colloid Chem 52:490–500
  • 36. Damay P, Leclercq F (eds) (1991) Metals in solution. Colloque Weyl VII. Editions de Physique, Les Ulis Cedex A [suppl. to J de Physique I, no. 12]
  • 37. Debierne MA (1914) Recherches sur les gaz produits par les substances radioactives. Décomposition de l’eau. Ann Phys 2:97–127
  • 38. Delcourt MO, Belloni J (1973) Capture de précurseurs de l’hydrazine par les ions Cu+ au cours de la radiolyse de l’ammoniac liquide. Radiochem Radioanal Lett 13:329–338
  • 39. Dole M (1948) Properties of the electric discharge in parallel electric and magnetic fields. Chem Eng News 26:2289
  • 40. Dole M (1989) My research in the field of the radiation chemistry of high polymers. In: Kroh J (1989) (ed) Early developments in radiation chemistry. Royal Society of Chemistry, Cambridge, pp 81–90
  • 41. Dorfman LM, Jou FY (1973) Optical absorption spectrum of the solvatd electron in ethers and in binary liquid systems. In: Jortner J, Kestner NR (eds) Electrons in fluids. Colloque Weyl III. Springer, Berlin, pp 447–459
  • 42. Douki T, Cadet J (2008) Radiation-induced damage to DNA: from model compounds to cell. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry from basics to applications in material and life sciences. EDP Sciences, Les Ulis Cedex A, pp 177–189
  • 43. Dye JL (ed) (1975) Electrons in fluids. The nature of metal-ammonia solutions. Colloque Weyl IV. J Phys Chem 79:2789–3079
  • 44. Freeman G (1983) I. Electrons in fluids. II. Nonhomogeneous kinetics. Ann Rev Phys Chem 34:463–492
  • 45. Fricke H (1934) The reduction of oxygen to hydrogen peroxide by the irradiation of its aqueous solution with X-rays. J Chem Phys 2:556–559
  • 46. Giesel F (1899) Some of the behavior of the radioactive barite and polonium. Wied Ann 69:91–94
  • 47. Giesel F (1900) Einiges über Radium-Baryum-Salze und deren Strahlen. Verhandl Deut Physik Ges 2:9–10
  • 48. Gray LH (1950) Cinquantenaire de la découverte du radium. J Chim Phys 48:172–178
  • 49. Haissinsky M (ed) (1955–1971) Actions chimiques et biologiques des radiations. Vols 1–15. Masson, Paris
  • 50. Haissinsky M (1957) La Chimie Nucléaire et ses applications. Masson & Cie, Paris
  • 51. Haissinsky M (1967) Rendements radiolytiques primaires en solution aqueuse neutre ou alcaline. In: Haissinsky M (ed) Actions chimiques et biologiques des radiations. Masson, Paris. Vol. 11, pp 133–179
  • 52. Hart EJ, Boag JW (1962) Absorption spectrum of the hydrated electron in water and in aqueous solution. J Am Chem Soc 84:4090–4093
  • 53. Henglein A (1977) The reactivity of silver atoms in aqueous solutions (A γ-radiolysis study). Ber Bunsenges Phys Chem 81:556–561
  • 54. Henglein A (1993) Physicochemical properties of small metal particles in solution: «Microelectrode» reactions, chemisorption, composite metal particles, and the atom--to-metal transition. J Phys Chem 97:5457–5471
  • 55. Hochanadel CJ (1952) Effects of cobalt gamma radiation on water and aqueous solutions. J Phys Chem 56:587–594
  • 56. Hopwood F, Phillips J (1938) Demonstrations: some effects produced by the irradiation of liquids and gels with alpha, beta and gamma rays and neutrons. Proc Phys Soc 50:438–442
  • 57. Houée-Lévin C, Bobrowski K (2008) Pulse radiolysis studies of free radical processes in peptides and proteins. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry from basics to applications in material and life sciences. EDP Sciences, Les Ulis Cedex A, pp 233–247
  • 58. Hummel A (1973) Ionization in non-polar liquids by high-energy electrons. In: Burton M, Magee JL (eds) Advances in radiation chemistry. Wiley, New York. Vol. 4 pp 1–102
  • 59. Hunt JW (1976) Early events in radiation chemistry. In: Burton M, Magee JL (eds) Advances in radiation chemistry. Wiley, New York. Vol. 5, pp 185–315
  • 60. Jaffé G (1913) Zur Theorie der Ionisation in Kolonnen. Ann Physik 42:303–344
  • 61. Joliot F (1939) Fr. Pat. No. 451131
  • 62. Jonah CD (1975) A wide time-range pulse radiolysis system of picosecond time resolution. Rev Sci Instrum 46:62–66
  • 63. Jonah CD (2010) An incomplete history of radiation chemistry. In: Wishart JF, Rao BSM (eds) Recent trends in radiation chemistry. World Scientific, Singapore, pp 1–20
  • 64. Jortner J, Kestner NR (eds) (1973) Electrons in fluids. Colloque Weyl III. Springer, Berlin
  • 65. Keene JP (1962) The absorption spectrum of the hydrated electron. Nature 197:47–49
  • 66. Kernbaum M (1909) Action chimique sur l’eau des rayons pénétrants de radium. CR Acad Sci 148:705–709
  • 67. Kroh J (1989) (ed) Early developments in radiation chemistry. Royal Society of Chemistry, Cambridge
  • 68. Lagowski JJ, Sienko MJ (eds) (1970) Metal-ammonia solutions. Colloque Weyl II. Butterworths, London
  • 69. LaVerne JA (2004) Radiation chemical effects of heavy ions. In: Mozumder A, HatanoY (eds) Charged particle and photon interactions with matter. Chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 403–429
  • 70. LaVerne JA, Schuler RH (1983) Decomposition of water by very high linear energy transfer radiations. J Phys Chem 87:4564–4565
  • 71. Lea DE (1955) Actions of radiations on living cells. Cambridge University Press, Cambridge
  • 72. Lepoutre G, Sienko MJ (eds) (1964) Solutions métal-ammoniac. Colloque Weyl I. Benjamin WA, New York
  • 73. Lind SC (1912) On the nature of the chemical action produced by α particles and the probable role played by ions. J Phys Chem 16:564–566
  • 74. Marignier JL, Belloni J, Delcourt MO, Chevalier J (1985) New microaggregates of non noble metals and alloys prepared by radiation induced reduction. Nature 317:344–345 Historic landmarks in radiation chemistry since early observations by Marie Skłodowska-Curie... 211
  • 75. Matheson MS, Dorfman LM (1960) Detection of short-lived transients in radiation chemistry. J Chem Phys 32:1870–1871
  • 76. Migus A, Gauduel Y, Martin JL, Antonetti A (1987) Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime. Phys Rev Lett 58:1559–1562
  • 77. Mostafavi M, Lampre I (2010) An overview of solvated electrons. Recent advances. In: Wishart JF, Rao BSM (eds) Recent trends in radiation chemistry. World Scientific, Singapore, pp 21–58
  • 78. Mostafavi M, Marignier JL, Amblard J, Belloni J (1989) Nucleation dynamics of silver aggregates. Simulation of the photographic development process. Radiat Phys Chem 34:605–617
  • 79. Mozumder A (1969) Charged particle tracks and their structure. In: Burton M, Magee JL (eds) Advances in radiation chemistry. Wiley, New York. Vol. 1, pp 1–102
  • 80. Mozumder A, Magee JL (1966) Model of tracks of ionizing radiation for radical reaction mechanisms. Radiat Res 28:203–214
  • 81. Orlov NA (1906) Proceedings of the session of the Physics division. Zh Russ Fiz Khim Ova Chast Fiz 38 4A:121–125
  • 82. Platzman RL (1953) Energy transfer from secondary electrons to matter. In: Magee JL, Kamen MD, Platzman RL (eds) Physical and chemical aspects of basic mechanisms in radiobiology. Nat Ac Sc-Nat Res Council, Washington D C 305:22–50
  • 83. Poincaré H (1896) Les rayons cathodiques et les rayons X. Rev Gén Sci 7:52–59
  • 84. Prütz WA, Butler J, Land EJ, Swallow AJ (1980) The role of sulphur peptide functions in free radical transfer. Biochem Biophys Res Commun 96:408–414
  • 85. Roentgen WC (1896) Ueber eine neue Art von Strahlen. 2. Mittheilung, Sitz Ber Physik-Med Ges, Wuerzburg, pp 11–18
  • 86. Sanche L, Parenteau L (1987) Ion-molecule surface reactions induced by slow (1–20 eV) electrons. Phys Rev Lett 59:136–138
  • 87. Sano H, Tachiya M (1979) Partially diffusion-controlled recombination. J Chem Phys 71:1276–1282
  • 88. Schulte-Frohlinde D (1989) Radiation chemistry in Karlsruhe and in Muelheim an der Ruhr. In: Kroh J (1989) (ed) Early developments in radiation chemistry. Royal Society of Chemistry, Cambridge, pp 387–408
  • 89. Schulte-Frohlinde D, Eiben K (1962) Solvatisierte Elektronen in eingefrorenen Lösungen. Z Naturforsch Teil A 17:445–447
  • 90. Sevilla MD, Bernhard WA (2008) Mechanisms of direct radiation damage to DNA. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry from basics to applications in material and life sciences. EDP Sciences, Les Ulis Cedex A, pp 191–201
  • 91. Sklodowska-Curie M (1899) Les rayons de Becquerel et le polonium. Rev Gén Sci 10:41–50
  • 92. Sklodowska-Curie M (1904) Badanie cial radioaktywnych. Chemik Polski 4:141–241
  • 93. Sklodowska-Curie M (1904) Recherches sur les substances radioactives. Thèse, Faculté des Sciences de Paris, Gauthier-Villars, 2nd ed. Paris
  • 94. Sonntag von C (2006) Free-radical-induced DNA damage and its repair. A chemical perspective. Springer, Berlin
  • 95. Stein G (1952) Some aspects of the radiation chemistry of organic solutes. Disc Faraday Soc 12:227–234
  • 96. Swallow JA (1983) Radiation chemistry. Ann Rep C, Royal Soc Chem 80:107–147
  • 97. Tabata Y (ed) (1991) Pulse radiolysis of irradiated systems. CRC Press, Boca Raton
  • 98. Tagawa S, Schnabel W, Washio M, Tabata Y (1981) Picosecond pulse radiolysis and laser flash photolysis studies on polymer degradation of polystyrene and poly-alfa-methylstyrene. Radiat Phys Chem 18:1087–1095
  • 99. Thomas JK (1969) Elementary processes and reactions in the radiolysis of water. In: Burton M, Magee JL (eds) Advances in radiation chemistry. Wiley, New York. Vol. 1, pp 103–198
  • 100. Thompson JC (ed) (1984) Excess electrons and metal-ammonia solutions. Colloque Weyl VI. J Phys Chem 88:3699–3913
  • 101. Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solutions. J Phys Chem Ref Data 18:1637–1755
  • 102. Warman JM, De Haas MP (2010) A history of pulse radiolysis time-resolved microwave conductivity (PRTRMC) studies. In: Wishart JF, Rao BSM (eds) Recent trends in radiation chemistry. World Scientific, Singapore, pp 161–200
  • 103. Watson E, Roy S (1972) Selected specific rates of reactions of the solvated electrons in alcohols. Nat Stand Ref Data System, NBS 42:1–22
  • 104. Webster B (ed) (1980) Excess electrons and metal-ammonia solutions Colloque Weyl V. J Phys Chem 84:1065–1298
  • 105. Weiss J (1944) Radiochemistry of aqueous solutions. Nature 153:748–750
  • 106. Wourtzel E (1919) Les actions chimiques du rayonnement alfa. Le Radium 11:19–22
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0006-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.