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Introduction 

The EIC mode [10, 14, 15, 27] is one of the frequency 
eigenmodes of a magnetized plasma. These waves 
are studied due to their importance in the heating of 
plasmas [34]. Jehan et al. [12] have investigated the 
nonlinear coupled ion-acoustic and ion-cyclotron waves 
propagating obliquely to the external magnetic field in 
dense collisionless electron-positron-ion magnetoplas-
ma using the Sagdeev potential method [2, 20]. Kaneko 
et al. [13] have modified EIC instabilities by the parallel 
and perpendicular plasma flow velocity shears. Their 
experiments have demonstrated that the ion-cyclotron 
instabilities are suppressed by the perpendicular flow 
velocity shear. 

An instability in the ion-cyclotron range of frequen-
cies, plays an important role in heating of ions [29]. 
Plasma cross-field diffusion [19, 25], and anomalous 
resistivity in space plasmas [33], have been investigated 
for the case of the inhomogeneous energy density driven 
(IEDD) [3] instability and it is different from the con-
ventional ion-cyclotron instability [21, 22]. Shi et al. [28] 
have shown that the electrostatic density shock and its 
corresponding solitary electric field structure can be 
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developed from an ion acoustic wave or an ion cyclo-
tron wave if the Mach number and the initial electric 
field satisfy some conditions. Agrimson et al. [1] have 
studied the effect of parallel velocity shear on the EIC 
instability in filamentary current channels. Koepke et 
al. [18] have investigated space-relevant studies of ion 
acoustic and ion cyclotron waves. 

In the condition of [(Πi/ω)2 < 1], where Πi is the ion 
plasma frequency, the ions in plasma can be directly 
heated at the frequency equal to ion cyclotron fre-
quency. For the plasma with [(Πi/ω)2 > 1], however, the 
heating of plasma becomes less efficient, since the only 
ions which interact with the exciting radio-frequency 
(RF) field are those in the surface layer of the plasma 
column, due to the strong skin effect [8, 9]. To avoid 
this undesirable effect, the rf energy is firstly poured 
and stored in the plasma as the wave energy and then it 
is transformed into the ion energy by means of the ion 
cyclotron damping. The EIC wave is well suited to the 
above mentioned wave in the region of lower density 
of the quiescent prominence (QP) plasma [23]. Stix 
[31] has examined the natural modes of oscillations of 
a cylindrical plasma of finite density at zero pressure 
in a longitudinal magnetic field. 

The purpose of this paper is to study the EIC wave 
in a cylindrical magnetized plasma. The general disper-
sion equation of waves near the ion cyclotron frequency 
is derived and simplified in two solutions which have 
electrostatic and electromagnetic characters. 

Mathematical model 

The general dispersion relation 

It is assumed that a plasma cylinder is infinitely long, 
surrounded by a vacuum and immersed in a uniform 
magnetic field, B0 and the behavior of plasma is a subject 
to the following conditions: 
1. Frequencies concerned here are considerably less 

than the electron cyclotron frequency, Ωe since we 
are interested in the region of ion cyclotron fre-
quency, ω << Ωe. 

2. Collision frequency ν is considered negligibly small, 
ω >> ν. 

3. The Larmor radii of the particles are small compared 
with the radial scale of the plasma. 

4. The thermal electron velocity in the axial direction is 
larger than the phase velocities of waves considered, 
and the other pressures are neglected. 
Thus, let us consider cylindrically symmetric os-

cillations of small amplitude. A list of symbols used 
in this paper is given (see list of symbols and definitions) 
together with their definitions. With these assumptions 
the equation of motion for the charged particle is: 

(1)  

and for the hot electron fluid the basic equations are 

(2)  
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where it is assumed that B
→

0 has the z-direction and the 
symbol “parallel” (in pe// and Te//) refers to the direction of 
the magnetic field. Because of the assumption (4), let us 
neglect the inertia term on the left hand side of Eq. (2). 

From Eqs. (1) to (4), the dielectric tensor K
↔

 for the 
plasma consisting of electron and multi-component ions 
is obtained as follows: 

(5) 

where 

(6) 

(7) 

(8) 
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(10) 

where: 

                        ,                           ,                        ,

                      ,                        ,

and Ω1, is the cyclotron frequency of the first ion. 
Eqs. (6)–(10) are in agreement with that obtained by 
Sitenko and Malnev [30] for electron and hydrogen ion 
only in the region of ion cyclotron frequency. 

The dispersion relation can be determined by solv-
ing Maxwell’s equations according to Chen [6] in the 
form: 

(11) 

Substituting the components of dielectric tensor 
Eqs. (8)–(10) into Eq. (11), give: 

(12) 
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(14)  

After several transformations of these equations, 
the Bessel equation can be obtained for the function 
En = Er + μn Eθ, in the form: 

(15) 

where: 

(16) 

(17) 

The values μn = μ1, μ2 are determined by the equa-
tion: 

(18) 

The choice of one of the two values of μn determines 
the polarization of the waves. The general dispersion 
relation which leaves the boundary conditions out of 
consideration can be obtained by substitution μn from 
Eq. (18) into Eq. (16) in the following form: 

(19)  

Ion acoustic and EIC waves 

Firstly, E1 wave (E2 = 0), which corresponds to the 
upper sign in Eq. (19) is considered. This wave has an 
electrostatic character. Let us expand in powers of 1/P 
as P is very large in the frequency range ω ∼ Ω. Then: 

(20) 

Let us now substitute Eqs. (8)–(10) for plasma 
containing three types of positive ion and electrons into 
Eq. (20), we then obtain the next dispersion relation, 

  

Eq. (21) is the same as the dispersion relation for 
the electrostatic approximation: 

(22) 

obtained by Stix [32]. For the case of kr1 ≈ 0, Eq. (21) 
can be simplified in the form: 

(23)  

which is the dispersion relation of the ion acoustic wave 
[32] propagating in the direction of the magnetic field. 
Let us assume further that 

(24) 

and that the direction of propagation is nearly per-
pendicular to the magnetic field then, the dispersion 
relation becomes: 

(25) 

This wave is the EIC wave [5]. In the case of oblique 
propagation, Eq. (21) shows that the propagation of 
EIC waves becomes possible at frequencies above the 
ion cyclotron frequency corresponding to various ion 
species and the ion acoustic wave [17, 26] are separated 
from each other by gaps, at which Eq. (21) can no longer 
be satisfied with real k

→
 in the frequency spectrum. 

It is impossible to make the axial wave number kz 
zero since a plasma in a laboratory device has a bound-
ary and the characteristic length of exciting system of 
wave is also finite. Consequently, the dispersion rela-
tion Eq. (21) for the EIC wave must be used for finite 
kz instead of Eq. (25). 

Torsional and compressional Alfvén waves 

Secondly, E2 wave (E1 = 0), which corresponds to the 
lower sign in Eq. (19) is considered, and expanding in 
terms of 1/P in the frequency range ω ≤ Ωi, gives: 

(26)  

The E2 wave (E1 = 0), has an electromagnetic char-
acter. Substituting S and D for plasma containing two 
types of positive ions and electrons into Eq. (26) and 
using the next approximations: ω << Ωe, and [(Πi

2 + 
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2) / ΩiΩe] >> 1, the following dispersion relation can 
be obtained in the form: 

2 22 0x xx x z xz z zzk K k k K k K+ + =

1

31 1 2
12 2 2

1 / / 2 31

1 1

ez

am a a
a

Z Tk

−⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟κ λ λω Π⎝ ⎠ ⎝ ⎠⎝ ⎠

2
32

12
2 31

1e

e

aa
a
⎛ ⎞Π

+ + >>⎜ ⎟λ λΩ Ω Ω ⎝ ⎠

3 31 2 2
2 2 2 2 2 2
1 2 3

1
2

1 / /1

1
1 1 1

1          0
er

aa a

m
Z Tk

⎛ ⎞λλ
+ +⎜ ⎟Ω −Ω −λ Ω −λ Ω⎝ ⎠
⎛ ⎞

+ =⎜ ⎟κ⎝ ⎠

2 2 2 2 2
2

2 2

( )
( )

r z

z

k c D N S
N S
− −

≈
ω −

21 ( ) 0n rn nrE k E
r r r
∂ ∂⎛ ⎞ + =⎜ ⎟∂ ∂⎝ ⎠

2 2
2 ( ) ( )z n
rn

P S N iD S iD
k

c S
− + μ +ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
2

2 z
z

k c
N ⎛ ⎞= ⎜ ⎟ω⎝ ⎠

2 2 2
2 ( )( )

0z z
n n

D N S P S N P Si
D S S

+ − − + −
μ + μ ⋅ + =

1
2

2 2

2 2
22 2

2 2

2
2

1 ( )( )

1 1 ( )( )
2

4 ( )

z

rn
z

z

P S N S D
S

k c
P S N S D

S
D

P N S
S

⎧ ⎫⎡ ⎤+ − +⎪ ⎣ ⎦ ⎪
⎪ ⎪
⎪ ⎪⎛ ⎞= − ⎡ ⎤+ − +⎨ ⎬⎜ ⎟⎣ ⎦ω ⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟+ + −⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

∓

2 2 2 2
21

2 2( )
( )

r z
z

z

k c D NP
S N

S S S N
≈ − +

ω −

2 2 2 2 2
2 3

2 2 2 22
1 2 31 2

2 2 2
2 2 3

1 2 2 2
3 3 2

2 2
2 32

12 2
2 31 th,

11
(1 )(1 )(1 )

(1 )(1 )

  (1 )(1 )

 (1 )(1 )

     1 0

r
e

e

e e
z

e e

ak
a

a

aa
k a

v

⎛ ⎞+⎜ ⎟−Ω −λ Ω −λ Ω⎜ ⎟
⎜ ⎟⎛ ⎞− λ Ω −λ Ω⋅⎜ ⎟⎜ ⎟Π
⎜ ⎟⋅ + λ −Ω −λ Ω⎜ ⎟

Ω Ω⎜ ⎟⎜ ⎟⎜ ⎟+ λ −Ω −λ Ω⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞Π Π

+ − + + + =⎜ ⎟⎜ ⎟⎜ ⎟λ λΩ Ω Ω ⎝ ⎠⎝ ⎠

2

2

1 1( ) z
z r z

E
ik rE r PE

r r r r r c
∂∂ ∂ ω⎛ ⎞− =⎜ ⎟∂ ∂ ∂⎝ ⎠

(21)



182 N. G. Zaki

(27) 

where η = m1/me. The plus sign in Eq. (27) corresponds 
to the torsional Alfvén (IC) wave [16, 24], which has a 
resonance at ω = Ωi, and which can propagate only if 
ω < Ωi. The minus sign gives the fast hydromantic mode 
which corresponds to the compressional Alfvén wave 
[7] at low frequencies. 

Conclusion 

It is evident that the resonance frequency in a plasma 
with ion density of 108 to 1010 cm–3 is always higher than 
the ion cyclotron frequency and its integer multiples. 
In this paper, the behavior of resonances is explained by 
the dispersion relation for the EIC wave. 

The general dispersion Eq. (19) is derived for an 
infinitely long infinity plasma cylinder, surrounded by 
a vacuum and immersed in a uniform magnetic field, 
B0. From Eq. (19), the following two waves can be 
found as: 
(A) E1 wave (E2 = 0), which corresponds to the upper 

sign in Eq. (19), and 
(B) E2 wave (E1 = 0), which corresponds to the lower 

sign in Eq. (19). 
(A) For E1 wave (E2 = 0), which has an electrostatic 

character, we derive the following dispersion equations: 
(A.1) Eq. (23) of the ion acoustic wave propagating in 
the direction of magnetic field, and (A.2) Eq. (25) of the 
EIC wave. In the case of oblique propagation, Eq. (21) 
shows that the propagation of EIC becomes possible 
at frequencies above the ion cyclotron frequency cor-

responding to various ion species and the ion acoustic 
waves are separated from each other by gaps, at which 
Eq. (21) can no longer be satisfied with real k

→
 in the 

frequency spectrum. 
(B) For E2 wave (E1 = 0), which has an electromag-

netic character, the dispersion Eqs. (27) are derived. 
The following dispersion equations can be obtained: 
(B.1) the plus sign in Eq. (27) corresponds to the 
torsional Alfvén (IC) wave, which has a resonance at 
ω = Ωi, and which can propagate only if ω < Ωi, and 
(B.2) the minus sign gives the fast hydromagnetic mode 
which corresponds to the compressional Alfvén wave at 
low frequencies. These waves are studied due to their 
importance in the heating of plasmas. 

The dispersion relation Eq. (21) for the EIC wave 
must be used for the finite kz instead of Eq. (25). The 
dispersion relation of  EIC wave, Eq. (21) is calculated 
numerically under the experimental conditions [23]. 
The dispersion relation was calculated from Eq. (21) 
for kz = 0.2095, Te = 5 × 10 deg. K for H+ is shown in 
Fig. 1. The special case of a three component plasma 
with hot electrons in a strong magnetic field may be 
interesting, e.g., in the context of fusion plasma [4, 11] 
containing D+, T+ and He2+. 

List of symbols and definitions
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Fig. 1. Dispersion relation calculated from Eq. (21) for 
kz = 0.2095, Te = 5 × 10 deg. K for H+. 
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c  – velocity of light, 
D = ½(R – L), 
E
→

 – electric field, 
En = Er + μn Eθ, 
e  – electric charge, 
In  – n-th order modified Bessel function of the 1st

   kind, 
Jn  – n-th order Bessel function of the 1st kind, 
J*  – surface current density, 
K
↔

  – dielectric tensor, 
Kn  – n-th order modified Bessel function of the 2nd 

   kind, 
k
→

  – wave number vector, 
L  – Eq. (7), 
mk  – mass of the k-th ion, 
Nr  = krc/ω, 
Nz  = kzc/ω, 
nk  – number of the k-th particle per unit volume, 
P  – Eq. (10), 
pk  – pressure of the k-th particle, 
R  – Eq. (6), 
S  – ½(R + L), 
Tk  – temperature of the k-th particle, 
T//  – parallel temperature, 
T⊥  – perpendicular temperature, 
vz  – axial drift velocity, 
vth,k  – thermal velocity of the k-th particle, 
λ  – wave length, 
vk  – velocity of the k-th particle, 
aj  = Zjnj/ne, 
η  = Ωe/Ω1, 
κ  – Boltzmann’s constant, 
εk  – sign of charge, ± 1, for the k-th particle, 
ν  – collision frequency, 
zk  – charge of the k-th ion, in units of the proton

    charge, 
λj  = Ω1/Ωj, 
kx

2 κTj⊥/Ω2
jmj, 

μn  – Eq. (18), 
Ω  = ω/Ω1, 
Πk  – plasma frequency of the k-th particle, 
Ω0  = ω/Πe, 
Ω  = ω/Ω1, 
Ω1  – cyclotron frequency of the first ion, 
Ωk  – cyclotron frequency of the k-th ion. 
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