PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnostics and scaling of fusion-produced neutrons in PF experiments

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
9th Kudowa Summer School „Towards Fusion Energy”
Języki publikacji
EN
Abstrakty
EN
Neutrons from a plasma focus (PF) device operated in a deuterium gas, measured as a function of time, location and direction of emission, reveal quite a number of important parameters on fusion reactions occurring in the dense high-current phase of the experiment. In addition the determination of the energy spectra of the emitted neutrons is important for understanding the mechanisms taking place for the neutron production. Results of neutron measurements in large experiments such as the former POSEIDON experiment in Stuttgart and the PF-1000 experiment in Warsaw are presented. The neutron diagnostic methods that had been utilized include nuclear track detectors, plastic scintillators coupled to photomultipliers, activation measurements, time-of-flight methods as well as pinholes for spatial resolution of the neutron source. The well known scaling law according to which the neutron yield scales roughly as the square of the energy input or the fourth power of the current is discussed. Reasons for strong deviation from this law for high energies - known as the saturation effect - are still a subject of debate.
Czasopismo
Rocznik
Strony
107--112
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • International Centre for Dense Magnetized Plasmas, 23 Hery Str., 01-497 Warsaw, Poland and Institut für Plasmaforschung, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany, Tel.: 0049 7032 22156, Fax: 0049 7032 921 919, mail@hellmutschmidt.de
Bibliografia
  • 1. Abd Al-Halim MA (2010) Simulation of Plasma Focus Devices with hemisphere electrodes. J Fusion Energy 29:134–140
  • 2. Bernard A, Coudeville A, Jolas A et al. (1975) Experimental studies of the plasma focus and evidence for non-thermal processes. Phys Fluids 18:180–194
  • 3. Filippov NV, Filippova TI, Vinogradov VP (1962) Dense high temperature plasma in the region of non-cylindrical z-pinch compression. Nucl Fusion, Suppl Pt 2:577–587 (in Russian)
  • 4. Herold H, Jerzykiewicz A, Sadowski M et al. (1989) Comparative analysis of large plasma focus experiments performed at IPF, Stuttgart, and at IPJ, Świerk. Nucl Fusion 29:1255–1269
  • 5. Jager U, Herold H (1987) Fast ion kinetics and fusion reaction mechanisms in the plasma focus. Nucl Fusion 27:407–423
  • 6. Jakubowska K, Kubkowska M, Skladnik-Sadowska E et al. (2011) Optical emission spectroscopy of plasma streams in PF-1000 experiments. Nukleonika 56;2:125–129
  • 7. Krasa J, Kralık M, Velyhan A et al. (2008) Anisotropy of the emission of DD-fusion neutrons caused by the plasma-focus vessel. Plasma Phys Control Fusion 50:125006 (10 p)
  • 8. Kubeš P, Kravarik J, Klir D et al. (2009) Determination of deuteron energy distribution from neutron diagnostics in a plasma-focus device. IEEE Trans Plasma Sci 37:83–87
  • 9. Kwiatkowski R, Skladnik-Sadowska E, Malinowski K et al. (2011) Measurements of electron and ion beams emitted from the PF-1000 device in the upstream and downstream direction. Nukleonika 56;2:119–123
  • 10. Lee S (1988) A simple facility for the teaching of plasma dynamics and plasma nuclear fusion. Am J Phys 56:62–68
  • 11. Lee S, Saw SH (2008) Neutron scaling laws from numerical experiments. Fusion Energy 27:292–295
  • 12. Lee S, Saw SH, Soto L et al. (2009) Numerical experiments on plasma focus neutron yield versus pressure compared with laboratory experiments. Plasma Phys Control Fusion 51:075006 (11 p)
  • 13. Mahmood S, Springham SV, Zhang T et al. (2006) Novel fast-neutron activation counter for high repetition rate measurements. Rev Sci Instrum 77:10E713 (4 p)
  • 14. Maisonnier C, Samuelli M, Linhart JG et al. (1969) Experiments with imploding plasma liners. In: Proc Plasma Phys Control Nucl Fusion Res, Vol. II, pp 77–86
  • 15. Mather JW (1964) Investigation of the high energy acceleration mode in the coaxial gun. Phys Fluids Suppl:S28–S34
  • 16. Michel L, Schonbach KH, Fischer H (1974) Neutron emission from a small 1-kJ plasma focus. Appl Phys Lett 24:57–59
  • 17. Patou C, Simonnet A, Watteau JP (1968) Dynamique et emission neutronique d’une decharge electrique non cylindrique focalisante. J Phys 29:973–984
  • 18. Schmidt H (1987) The role of beam target processes in extrapolating the plasma focus to reactor conditions. In: Proc of the Workshop PF and Z-pinch Research, 29–30 June 1987, Toledo, Spain, p 65
  • 19. Schmidt H (2001) On the influence of gas puff loads on plasma focus dynamics. Nukleonika 46;1:15–19
  • 20. Schmidt H, Kubeš P, Sadowski MJ et al. (2006) Neutron emission characteristics of pinched dense magnetized plasmas. IEEE Trans Plasma Sci 34:2363–2367
  • 21. Schmidt R (1987) Untersuchung uber den Ablauf der Fusionsprozesse im Plasmafokus unter Verwendung von zeitaufgeloster Neutronenspektroskopie. PhD dissertation, University of Stuttgart, Stuttgart, Germany
  • 22. Schmidt R, Herold H (1987) A method for time resolved neutron spectroscopy on short pulsed fusion neutron sources. Plasma Phys Control Fusion 29:523–534
  • 23. Scholz M, Karpinski L, Paduch M et al. (2010) Development of diagnostics for large-scale experiments in dense magnetized plasmas. In: Proc of the Conf on Plasma Diagnostics, 12–16 April 2010, Pont-a-Mousson, France
  • 24.Velikovich AL, Clark RW, Davis J et al. (2007) Z-pinch plasma neutron sources. Phys Plasmas 14:022701 (16 p)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0006-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.