Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a solution of motion planning and control of mobile robot in a two-dimensional environment with elliptical static obstacle based on hydrodynamics description. Theoretical background refers to solution of Laplace equation using complex algebra. The method of designing complex potential with respect to stationary elliptical obstacle and stationary goal is formally shown. Next, the planning motion problem is extended assuming that the goal is moving. Then results of motion planning is used in order to design closed-loop control algorithms which is based on decoupling technique. Theoretical considerations are supported by numerical simulations illustrating example results of motion planning and control.
Słowa kluczowe
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
autor
autor
- Chair of Control and Systems Engineering, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland www:http://etacar.put.poznan.pl/pawel.szulczynski/, pawel.szulczynski@put.poznan.pl
Bibliografia
- [1] S. Akishita, S. Kawamura, and K Hayashi. Laplace potential for moving obstacle avoidance and approach of a mobile robot. Japan-USA Symposium on Flexible Automation, A Pacific Rim Conference, pages 139– 142, 1990.
- [2] R. C. Arkin. Principles of Robot Motion Theory, Algorithms and Implementation. MIT Press, Boston, 2005.
- [3] A. Behal, Dixon W., D. M. Dawson, and B. Xian. Lyapunov-Based Control of Robotic Systems. CRC Press, 2010.
- [4] G. Campion, G. Bastin, and B. D’Andrea-Novel. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1):47–62, 1996.
- [5] C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using Laplace’s equation. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 2102–2106, 1990.
- [6] I. Duleba. Algorithms of motion planning for nonholonomic robots. Publishing House of Wrocław University of Technology, 1998.
- [7] H. J. S. Feder and J. J. E. Slotine. Real-time path planning using harminic potentials in dynamic environments. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 874–881, Appril 1997.
- [8] B. Girau and A. Boumaza. Embedded harmonic control for dynamic trajectory planning on fpga. In Proceedings of the 25th conference on Proceedings of the 25th IASTED International Multi-Conference: artificial intelligence and applications, pages 244–249, Anaheim, CA, USA, 2007.
- [9] O Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5:90–98, 1986.
- [10] J. Kim and P. Khosla. Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, pages 338–349, 1992.
- [11] D. Koditschek. Exact robot navigation by means of potential functions: Some topological considerations. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 1–6, 1987.
- [12] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.
- [13] C. Louste and A. Liégeois. Path planning for nonholonomic vehicles: a potential viscous fluid field method. Robotica, 20:291–298, 2002.
- [14] S. Mastellone, D. M. Stipanovic´ , C. R. Graunke, K. A. Intlekofer, and M. W. Spong. Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. The International Journal of Robotics Research, 27(1):107–126, 2008.
- [15] L.M. Milne-Thomson. Theoretical hydrodynamics. Dover Publications, 1996.
- [16] D. Panagou, H. G. Tanner, and K. J. Kyriakopoulos. Dipole-like fields for stabilization of systems with pfaffian constraints. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 4499–4504, Anchorage, Alaska, USA, 2010.
- [17] E. Rimon and D. E. Koditschek. The construction of analytic diffeomorphisms for exact robot navigation on star worlds. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 21–26, 1989.
- [18] G. P. Roussos, D. V. Dimarogonas, and K. J. Kyriakopoulos. 3d navigation and collision avoidance for a non-holonomic vehicle. In Proceedings of American Control Conference, pages 3512–3517, Seattle, WA, USA, 2008.
- [19] R. Soukieh, I. Shames, and B. Fidan. Obstacle avoidance of non-holonomic unicycle robots based on fluid mechanical modeling. In Proceedings of European Control Conference, pages 3269–3274, Budapest, Hungary, 2009.
- [20] S. Waydo and R. M. Murray. Vehicle motion planning using stream functions. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 2484–2491, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0006-0016